def test_affine(self): with self.test_session() as sess: x = tf.placeholder(tf.float32, shape=[None, 3]) z = graph.affine_layer(10, x) self.assertAllEqual(10, z.get_shape()[-1]) x_val = np.array([[3., 2., 1.]]) sess.run(tf.global_variables_initializer()) z_val = sess.run(z, feed_dict={x: x_val}) self.assertEquals((1, 10), z_val.shape) self.assertAllClose([[ -0.92742872, 2.20097542, 0.72329885, -0.8619436, -0.09275365, 1.63259518, 3.04762506, 0.80803722, 0.48845479, 2.23918748 ]], z_val)
def test_affine(self): with self.test_session() as sess: x = tf.placeholder(tf.float32, shape=[None, 3]) z = graph.affine_layer(10, x) # Verify graph properties. self.assertAllEqual(10, z.get_shape()[-1]) # Setup for running the graph. sess.run(tf.global_variables_initializer()) # Verify that dimensions work with more than one row. sess.run(z, feed_dict={x: np.array([[1., 2., 3.], [4., 5., 6.]])}) # Verify computation correct. x_val = np.array([[3., 2., 1.]]) z_val = sess.run(z, feed_dict={x: x_val}) self.assertEquals((1, 10), z_val.shape) self.assertAllClose([[ -0.92742872, 2.20097542, 0.72329885, -0.8619436, -0.09275365, 1.63259518, 3.04762506, 0.80803722, 0.48845479, 2.23918748 ]], z_val)
def test_affine(self): tf.set_random_seed(0) with self.test_session() as sess: x = tf.placeholder(tf.float32, shape=[None, 3]) z = graph.affine_layer(10, x) # Verify graph properties. self.assertAllEqual(10, z.get_shape()[-1]) # Setup for running the graph. sess.run(tf.global_variables_initializer()) # Verify that dimensions work with more than one row. sess.run(z, feed_dict={x: np.array([[1., 2., 3.], [4., 5., 6.]])}) # Verify computation correct. x_val = np.array([[3., 2., 1.]]) z_val = sess.run(z, feed_dict={x: x_val}) self.assertEqual((1, 10), z_val.shape) self.assertAllClose([[ -1.477905, -0.144029, 0.96745, 0.491507, -0.105209, -0.558219, 0.77895, 2.462549, -0.855641, 2.503024 ]], z_val)
def test_affine(self): tf.set_random_seed(0) with self.test_session() as sess: x = tf.placeholder(tf.float32, shape=[None, 3]) z = graph.affine_layer(10, x) # Verify graph properties. self.assertAllEqual(10, z.get_shape()[-1]) # Setup for running the graph. sess.run(tf.global_variables_initializer()) # Verify that dimensions work with more than one row. sess.run(z, feed_dict={ x: np.array([[1., 2., 3.], [4., 5., 6.]])}) # Verify computation correct. x_val = np.array([[3., 2., 1.]]) z_val = sess.run(z, feed_dict={x: x_val}) self.assertEqual((1, 10), z_val.shape) self.assertAllClose([[ -1.477905, -0.144029, 0.96745, 0.491507, -0.105209, -0.558219, 0.77895 , 2.462549, -0.855641, 2.503024]], z_val)