예제 #1
0
    def test_no_fully_connected_layers(self):
        with self.test_session() as sess:
            x = tf.placeholder(tf.float32, shape=[None, 3])
            out = graph.fully_connected_layers([], x)
            self.assertAllEqual(3, out.get_shape()[-1])

            x_val = np.array([[3., 2., 1.], [5., 6., 87.]])
            sess.run(tf.global_variables_initializer())
            out_val = sess.run(out, feed_dict={x: x_val})
            self.assertEquals((2, 3), out_val.shape)
            self.assertAllClose(x_val, out_val)
예제 #2
0
    def test_fully_connected_layers(self):
        with self.test_session() as sess:
            x = tf.placeholder(tf.float32, shape=[None, 3])
            out = graph.fully_connected_layers([10, 20, 100, 1], x)
            self.assertAllEqual(1, out.get_shape()[-1])

            x_val = np.array([[3., 2., 1.], [5., 6., 87.]])
            sess.run(tf.initialize_all_variables())
            out_val = sess.run(out, feed_dict={x: x_val})
            self.assertEquals((2, 1), out_val.shape)
            self.assertAllClose([[1.597199],[50.472717]], out_val)
예제 #3
0
 def test_fully_connected_doesnt_use_hidden_dim_as_layer_name(self):
     tf.set_random_seed(0)
     with self.test_session() as sess:
         x = tf.placeholder(tf.float32, shape=[None, 3])
         out = graph.fully_connected_layers([10, 10, 10, 10, 20, 1], x)
         self.assertAllEqual(1, out.get_shape()[-1])
         sess.run(tf.global_variables_initializer())
         sess.run(out, feed_dict={
             x: np.array([[1., 2., 3.], [4., 5., 6.]])})
         x_val = np.array([[-3., 2., 1.], [5., 6., 87.]])
         out_val = sess.run(out, feed_dict={x: x_val})
예제 #4
0
 def test_fully_connected_doesnt_use_hidden_dim_as_layer_name(self):
     tf.set_random_seed(0)
     with self.test_session() as sess:
         x = tf.placeholder(tf.float32, shape=[None, 3])
         out = graph.fully_connected_layers([10, 10, 10, 10, 20, 1], x)
         self.assertAllEqual(1, out.get_shape()[-1])
         sess.run(tf.global_variables_initializer())
         sess.run(out,
                  feed_dict={x: np.array([[1., 2., 3.], [4., 5., 6.]])})
         x_val = np.array([[-3., 2., 1.], [5., 6., 87.]])
         out_val = sess.run(out, feed_dict={x: x_val})
예제 #5
0
    def test_fully_connected_layers(self):
        tf.set_random_seed(0)
        with self.test_session() as sess:
            x = tf.placeholder(tf.float32, shape=[None, 3])
            out = graph.fully_connected_layers([10, 20, 100, 1], x)
            self.assertAllEqual(1, out.get_shape()[-1])

            sess.run(tf.global_variables_initializer())

            sess.run(out,
                     feed_dict={x: np.array([[1., 2., 3.], [4., 5., 6.]])})

            x_val = np.array([[-3., 2., 1.], [5., 6., 87.]])
            out_val = sess.run(out, feed_dict={x: x_val})
            self.assertEqual((2, 1), out_val.shape)
            self.assertAllClose([[0.0], [0.245194]], out_val)
예제 #6
0
    def test_no_fully_connected_layers(self):
        tf.set_random_seed(0)
        with self.test_session() as sess:
            x = tf.placeholder(tf.float32, shape=[None, 3])
            out = graph.fully_connected_layers([], x)
            self.assertAllEqual(3, out.get_shape()[-1])

            sess.run(tf.global_variables_initializer())

            sess.run(out, feed_dict={
                x: np.array([[1., 2., 3.], [4., 5., 6.]])})

            x_val = np.array([[3., 2., 1.], [5., 6., 87.]])
            out_val = sess.run(out, feed_dict={x: x_val})
            self.assertEqual((2, 3), out_val.shape)
            self.assertAllClose(x_val, out_val)