def ccc_test(LucN, hccN, MixN, mm2): r_LucN, r_hccN, r_MixN = graph.num_read_cells(mm2) time_point = len(r_LucN[0]) #8 num_experiments = len(r_LucN) sim_tmp = len(LucN) / time_point #1.25 LucN_p = [] hccN_p = [] MixN_p = [] for t in range(time_point): LucN_p.append(LucN[int(round(t * sim_tmp))]) hccN_p.append(hccN[int(round(t * sim_tmp))]) MixN_p.append(MixN[int(round(t * sim_tmp))]) ave_LucN_r = np.average(r_LucN, axis=0) var_LucN_r = np.var(r_LucN, axis=0) ccc = [] for t in range(len(r_LucN[0])): #timepoint numerator = 0 for j in range(num_experiments): #experiment numerator += (r_LucN[j][t] - ave_LucN_r[t]) * 1 denominator = var_LucN_r[t]**2 + 1 + (ave_LucN_r[t] - LucN_p[t])**2 tmp = 2 * numerator / (denominator * num_experiments) ccc.append(tmp) print ccc
def ccc_test(LucN, hccN, MixN, mm2): r_LucN, r_hccN, r_MixN = graph.num_read_cells(mm2) time_point = len(r_LucN[0])#8 num_experiments = len(r_LucN) sim_tmp = len(LucN)/time_point #1.25 LucN_p = [] hccN_p = [] MixN_p = [] for t in range(time_point): LucN_p.append(LucN[int(round(t*sim_tmp))]) hccN_p.append(hccN[int(round(t*sim_tmp))]) MixN_p.append(MixN[int(round(t*sim_tmp))]) ave_LucN_r = np.average(r_LucN, axis=0) var_LucN_r = np.var(r_LucN, axis=0) ccc = [] for t in range(len(r_LucN[0])):#timepoint numerator = 0 for j in range(num_experiments):#experiment numerator += (r_LucN[j][t]-ave_LucN_r[t])*1 denominator = var_LucN_r[t]**2 + 1 + (ave_LucN_r[t] - LucN_p[t])**2 tmp = 2*numerator/(denominator*num_experiments) ccc.append(tmp) print ccc
def num_cell_corrcoef(LucN, hccN, MixN, mm2): #Raw Data r_LucN, r_hccN, r_MixN = graph.num_read_cells(mm2) #Adjustment of Timeseries time_point = len(r_LucN[0]) # Experiments sim_time_point = len(LucN) # Simulation time sim_tmp = (len(LucN) * 0.66) / (time_point - 1) #1.25 #Simulation timepoint LucN_p = [] hccN_p = [] MixN_p = [] for t in range(time_point): if t != 0: print int(sim_time_point * 0.3 + round(t * sim_tmp)) LucN_p.append(LucN[int(sim_time_point * 0.3 + round(t * sim_tmp))]) hccN_p.append(hccN[int(sim_time_point * 0.3 + round(t * sim_tmp))]) MixN_p.append(MixN[int(sim_time_point * 0.3 + round(t * sim_tmp))]) else: LucN_p.append(LucN[int(round(t * sim_tmp))]) hccN_p.append(hccN[int(round(t * sim_tmp))]) MixN_p.append(MixN[int(round(t * sim_tmp))]) print 'Simulation vs Raw' print 'Luc' print check_number_of_cells(LucN_p, r_LucN, 'Luc') print 'Mix' print check_number_of_cells(MixN_p, r_MixN, 'Mix') print 'hcc' print check_number_of_cells(hccN_p, r_hccN, 'HCC') draw.all_cells_fig(LucN_p, r_LucN, MixN_p, r_MixN, hccN_p, r_hccN) corr_Luc = [] corr_hcc = [] corr_Mix = [] for i in range(len(r_LucN)): #times of experiments tmp_Luc = np.corrcoef(r_LucN[i], LucN_p) tmp_hcc = np.corrcoef(r_hccN[i], hccN_p) tmp_Mix = np.corrcoef(r_MixN[i], MixN_p) corr_Luc.append(tmp_Luc[0, 1]) corr_hcc.append(tmp_hcc[0, 1]) corr_Mix.append(tmp_Mix[0, 1]) print 'Average Correlation Luc = %s, HCC = %s, Mix ~ %s ' % (np.average( np.array(corr_Luc)), np.average( np.array(corr_hcc)), np.average(np.array(corr_Mix))) return 0
def num_cell_corrcoef(LucN, hccN, MixN, mm2): #Raw Data r_LucN, r_hccN, r_MixN = graph.num_read_cells(mm2) #Adjustment of Timeseries time_point = len(r_LucN[0]) # Experiments sim_time_point = len(LucN) # Simulation time sim_tmp = (len(LucN)*0.66)/(time_point-1) #1.25 #Simulation timepoint LucN_p = [] hccN_p = [] MixN_p = [] for t in range(time_point): if t != 0: print int(sim_time_point*0.3 + round(t*sim_tmp)) LucN_p.append(LucN[int(sim_time_point*0.3 + round(t*sim_tmp))]) hccN_p.append(hccN[int(sim_time_point*0.3 + round(t*sim_tmp))]) MixN_p.append(MixN[int(sim_time_point*0.3 + round(t*sim_tmp))]) else: LucN_p.append(LucN[int(round(t*sim_tmp))]) hccN_p.append(hccN[int(round(t*sim_tmp))]) MixN_p.append(MixN[int(round(t*sim_tmp))]) print 'Simulation vs Raw' print 'Luc' print check_number_of_cells(LucN_p, r_LucN, 'Luc') print 'Mix' print check_number_of_cells(MixN_p, r_MixN, 'Mix') print 'hcc' print check_number_of_cells(hccN_p, r_hccN, 'HCC') draw.all_cells_fig(LucN_p, r_LucN, MixN_p, r_MixN, hccN_p, r_hccN) corr_Luc = [] corr_hcc = [] corr_Mix = [] for i in range(len(r_LucN)): #times of experiments tmp_Luc = np.corrcoef(r_LucN[i], LucN_p) tmp_hcc = np.corrcoef(r_hccN[i], hccN_p) tmp_Mix = np.corrcoef(r_MixN[i], MixN_p) corr_Luc.append(tmp_Luc[0,1]) corr_hcc.append(tmp_hcc[0,1]) corr_Mix.append(tmp_Mix[0,1]) print 'Average Correlation Luc = %s, HCC = %s, Mix ~ %s ' % (np.average(np.array(corr_Luc)), np.average(np.array(corr_hcc)), np.average(np.array(corr_Mix))) return 0
def exp_test(): #parameter luc_node = 100 time = 10 luc_gro = 10 #Generate Graph lucG = nx.barabasi_albert_graph(luc_node, luc_gro) #Time series cell volume LucN = [] #Number of initial cell LucN0 = 100 LucN_init = 100 mm2 = 43 for t in range(time): LucN.append(calc.convert_volume(LucN0)) lucG = graph.update_graph(lucG, luc_gro) LucN0 = LucN_init * math.exp(1 / 10 * (t + 1)) r_LucN, r_hccN, r_MixN = graph.num_read_cells(mm2) time_point = len(r_LucN[0]) #8 sim_tmp = len(LucN) / time_point #1.25 LucN_p = [] for t in range(time_point): LucN_p.append(LucN[int(round(t * sim_tmp))]) corr_Luc = [] for i in range(len(r_LucN)): #times of experiments tmp_Luc = np.corrcoef(r_LucN[i], LucN_p) corr_Luc.append(tmp_Luc[0, 1]) print np.average(np.array(corr_Luc)) return 0
def exp_test(): #parameter luc_node = 100 time = 10 luc_gro = 10 #Generate Graph lucG = nx.barabasi_albert_graph(luc_node, luc_gro) #Time series cell volume LucN = [] #Number of initial cell LucN0 = 100 LucN_init = 100 mm2 = 43 for t in range(time): LucN.append(calc.convert_volume(LucN0)) lucG = graph.update_graph(lucG, luc_gro) LucN0 = LucN_init*math.exp(1/10*(t+1)) r_LucN, r_hccN, r_MixN = graph.num_read_cells(mm2) time_point = len(r_LucN[0])#8 sim_tmp = len(LucN)/time_point #1.25 LucN_p = [] for t in range(time_point): LucN_p.append(LucN[int(round(t*sim_tmp))]) corr_Luc = [] for i in range(len(r_LucN)): #times of experiments tmp_Luc = np.corrcoef(r_LucN[i], LucN_p) corr_Luc.append(tmp_Luc[0,1]) print np.average(np.array(corr_Luc)) return 0