from performance import Performance from goody import irange from graph_goody import random_graph,spanning_tree # Put script below to generate data for Problem #1 # In case you fail, the data appears in sample8.pdf in the helper folder for i in range(8): size=(2**i)*1000 g=random_graph(size,lambda x:x*10) p=Performance(lambda :spanning_tree(g),lambda :None,5,'\n\nSpanning Tree of size ' + str(size)) p.evaluate() p.analyze()
from performance import Performance from goody import irange from graph_goody import random, spanning_tree # Put script here to generate data for Problem #1 g = None def create_random(n): global g g = random(n, lambda n : 10*n) for i in irange(0,7) : n = 1000 * 2**i p = Performance(lambda : spanning_tree(g), lambda : create_random(n),5,'Spanning Tree of size {}'.format(n)) p.evaluate() p.analyze() print()
def span_time(n): global rand_graph spanning_tree(rand_graph)
from performance import Performance from goody import irange from graph_goody import random_graph,spanning_tree from graph import Graph # Put script below to generate data for Problem #1 # In case you fail, the data appears in sample8.pdf in the helper folder global nodes global graph if __name__ == '__main__': nodes = 1000 while nodes <= 128000: graph = random_graph(nodes,lambda n : 10*n) perf = Performance(lambda: spanning_tree(graph),setup=lambda:None,times_to_measure=5,title='Spanning Tree Timings for '+str(nodes)+' nodes') perf.evaluate() perf.analyze() nodes *= 2
def spamming_tree(): return spanning_tree(create_random())
from performance import Performance from goody import irange from graph_goody import random, spanning_tree # Put script here to generate data for Problem #1 def create_random(): global dog dog = random(x*1000, lambda n : 10*n) if __name__ == '__main__': x=1 while x<129: y = Performance(lambda:spanning_tree(dog), lambda:create_random(), title = "Spanning Tree of Size " + str(x*1000)) y.evaluate() y.analyze() print() x = 2*x
from performance import Performance from goody import irange from graph_goody import random_graph, spanning_tree # Put script here to generate data for Problem #1 # In case you fail, the data appears in sample8.pdf in the helper folder def creat_random(n): global correct_size correct_size = random_graph(n, lambda n: n * 10) for i in irange(0, 7): n = 1000 n = n * (2**i) p = Performance(lambda: spanning_tree(correct_size), lambda: creat_random(n), 5, title='Spanning Tree of size {}'.format(n)) p.evaluate() p.analyze() print()
from performance import Performance from graph_goody import random_graph, spanning_tree # Put script below to generate data for Problem #1 # In case you fail, the data appears in sample8.pdf in the helper folder def create_random(size: int) -> 'Graph': return random_graph(size, lambda n: 10 * n) graph = None size = 1 while size <= 128: graph = create_random(size * 1000) p = Performance(lambda: spanning_tree(graph), title=f'Spanning Tree of size {size*1000}') p.evaluate() p.analyze() print() size *= 2
from performance import Performance from goody import irange from graph_goody import random_graph,spanning_tree # Put script below to generate data for Problem #1 # In case you fail, the data appears in sample8.pdf in the helper folder def create_random(i): global graph graph = random_graph(i, lambda n : 10*n) for i in irange(0,7): p = Performance(lambda : spanning_tree(graph), lambda: create_random(2**i * 1000), 5, f'\nSpanning Tree of size {2**i *1000}') p.evaluate() p.analyze()