예제 #1
0
def train(config):

    gpu_options = tf.GPUOptions(visible_device_list="2")
    sess_config = tf.ConfigProto(allow_soft_placement=True,
                                 gpu_options=gpu_options)
    sess_config.gpu_options.allow_growth = True

    with open(config.word_emb_file, "r") as fh:
        word_mat = np.array(json.load(fh), dtype=np.float32)
    with open(config.char_emb_file, "r") as fh:
        char_mat = np.array(json.load(fh), dtype=np.float32)
    with open(config.train_eval_file, "r") as fh:
        train_eval_file = json.load(fh)
    with open(config.dev_eval_file, "r") as fh:
        dev_eval_file = json.load(fh)
    with open(config.dev_meta, "r") as fh:
        meta = json.load(fh)

    dev_total = meta["total"]
    print("Building model...")
    parser = get_record_parser(config)
    train_dataset = get_batch_dataset(config.train_record_file, parser, config)
    dev_dataset = get_dataset(config.dev_record_file, parser, config)
    handle = tf.placeholder(tf.string, shape=[])
    iterator = tf.data.Iterator.from_string_handle(handle,
                                                   train_dataset.output_types,
                                                   train_dataset.output_shapes)
    train_iterator = train_dataset.make_one_shot_iterator()
    dev_iterator = dev_dataset.make_one_shot_iterator()

    model = Model(config, iterator, word_mat, char_mat)
    graph_handler = GraphHandler(
        config, model
    )  # controls all tensors and variables in the graph, including loading /saving

    loss_save = 100.0
    patience = 0
    lr = config.init_lr

    with tf.Session(config=sess_config) as sess:
        sess.run(tf.global_variables_initializer())
        graph_handler.initialize(sess)
        train_handle = sess.run(train_iterator.string_handle())
        dev_handle = sess.run(dev_iterator.string_handle())
        sess.run(tf.assign(model.is_train, tf.constant(True, dtype=tf.bool)))
        sess.run(tf.assign(model.lr, tf.constant(lr, dtype=tf.float32)))
        print("Started training")
        for _ in tqdm(range(1, config.num_steps + 1)):
            global_step = sess.run(model.global_step) + 1
            loss, train_op = sess.run([model.loss, model.train_op],
                                      feed_dict={handle: train_handle})
            if global_step % config.period == 0:
                loss_sum = tf.Summary(value=[
                    tf.Summary.Value(tag="model/loss", simple_value=loss),
                ])
                graph_handler.add_summary(loss_sum, global_step)
            if global_step % config.checkpoint == 0:
                sess.run(
                    tf.assign(model.is_train, tf.constant(False,
                                                          dtype=tf.bool)))
                _, summ = evaluate_batch(model, config.val_num_batches,
                                         train_eval_file, sess, "train",
                                         handle, train_handle)
                for s in summ:
                    graph_handler.add_summary(s, global_step)
                metrics, summ = evaluate_batch(
                    model, dev_total // config.batch_size + 1, dev_eval_file,
                    sess, "dev", handle, dev_handle)
                sess.run(
                    tf.assign(model.is_train, tf.constant(True,
                                                          dtype=tf.bool)))

                dev_loss = metrics["loss"]
                if dev_loss < loss_save:
                    loss_save = dev_loss
                    patience = 0
                else:
                    patience += 1
                if patience >= config.patience:
                    lr /= 2.0
                    loss_save = dev_loss
                    patience = 0
                sess.run(tf.assign(model.lr, tf.constant(lr,
                                                         dtype=tf.float32)))
                graph_handler.add_summaries(summ, global_step)
                graph_handler.writer.flush()
                filename = os.path.join(
                    config.save_dir,
                    "{}_{}.ckpt".format(config.model_name, global_step))
                graph_handler.save(sess, filename)
def _train(config):
  word2idx = Counter(json.load(open("../data/{}/word2idx_{}.json".format(config.data_from, config.data_from), "r"))["word2idx"])
  idx2word = json.load(open("../data/{}/word2idx_{}.json".format(config.data_from, config.data_from), "r"))["idx2word"]
  assert len(word2idx) == len(idx2word)
  for i in range(10):  assert word2idx[idx2word[i]] == i
  vocab_size = len(word2idx)
  print("vocab_size", vocab_size, idx2word[:10])
  word2vec = Counter(json.load(open("../data/{}/word2vec_{}.json".format(config.data_from, config.pretrain_from), "r"))["word2vec"])
  # word2vec = {} if config.debug or config.load  else get_word2vec(config, word2idx)
  idx2vec = {word2idx[word]: vec for word, vec in word2vec.items() if word in word2idx}
  print("no unk words:", len(idx2vec))

  unk_embedding = np.random.multivariate_normal(np.zeros(config.word_embedding_size), np.eye(config.word_embedding_size))
  config.emb_mat = np.array([idx2vec[idx] if idx in idx2vec else unk_embedding for idx in range(vocab_size)])
  config.vocab_size = vocab_size
  print("emb_mat:", config.emb_mat.shape)
  test_type = "test"
  if config.data_from == "ice":
    test_type = "dev"
  else:
    test_type = "test"

  train_dict, test_dict = {}, {}
  ice_flat = ""
  if config.data_from == "ice" and config.model_name.endswith("flat"):
    ice_flat = "_flat"
  if os.path.exists("../data/{}/{}_{}{}{}.json".format(config.data_from, config.data_from, "train", ice_flat, config.clftype)):
    train_dict = json.load(open("../data/{}/{}_{}{}{}.json".format(config.data_from, config.data_from, "train", ice_flat, config.clftype), "r"))
  if os.path.exists("../data/{}/{}_{}{}{}.json".format(config.data_from, config.data_from, test_type, ice_flat, config.clftype)):
    test_dict = json.load(open("../data/{}/{}_{}{}{}.json".format(config.data_from, config.data_from, test_type, ice_flat, config.clftype), "r"))

  # check
  for key, val in train_dict.items():
    if isinstance(val[0], list) and len(val[0])>10: print(key, val[0][:50])
    else: print(key, val[0:4])
  print("train:", len(train_dict))
  print("test:", len(test_dict))
  if config.data_from == "reuters":
    train_data = DataSet(train_dict, "train") if len(train_dict)>0 else read_reuters(config, data_type="train", word2idx=word2idx)
    dev_data = DataSet(test_dict, "test") if len(test_dict)>0 else read_reuters(config, data_type="test", word2idx=word2idx)
  elif config.data_from == "20newsgroup":
    train_data = DataSet(train_dict, "train") if len(train_dict)>0 else read_news(config, data_type="train", word2idx=word2idx)
    dev_data = DataSet(test_dict, "test") if len(test_dict)>0 else read_news(config, data_type="test", word2idx=word2idx)
  elif config.data_from == "ice":
    train_data = DataSet(train_dict, "train")
    dev_data = DataSet(test_dict, "dev")

  config.train_size = train_data.get_data_size()
  config.dev_size = dev_data.get_data_size()
  print("train/dev:", config.train_size, config.dev_size)

  # calculate doc length
  # TO CHECK
  avg_len = 0
  for d_l in train_dict["x_len"]:
    avg_len += d_l/config.train_size
  print("avg_len at train:", avg_len)

  if config.max_docs_length > 2000:  config.max_docs_length = 2000
  pprint(config.__flags, indent=2)
  model = get_model(config)
  trainer = Trainer(config, model)
  graph_handler = GraphHandler(config, model)
  sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
  graph_handler.initialize(sess)

  num_batches = config.num_batches or int(math.ceil(train_data.num_examples / config.batch_size)) * config.num_epochs
  global_step = 0

  dev_evaluate = Evaluator(config, model)

  best_f1 = 0.50
  for batch in tqdm(train_data.get_batches(config.batch_size, num_batches=num_batches, shuffle=True, cluster=config.cluster), total=num_batches):
    global_step = sess.run(model.global_step) + 1
    # print("global_step:", global_step)
    get_summary = global_step % config.log_period
    loss, summary, train_op = trainer.step(sess, batch, get_summary)

    if get_summary:
      graph_handler.add_summary(summary, global_step)
    # occasional saving
    # if global_step % config.save_period == 0 :
    #  graph_handler.save(sess, global_step=global_step)
    if not config.eval:
      continue
    # Occasional evaluation
    if global_step % config.eval_period == 0:
      #config.test_batch_size = config.dev_size/3
      num_steps = math.ceil(dev_data.num_examples / config.test_batch_size)
      if 0 < config.val_num_batches < num_steps:
        num_steps = config.val_num_batches
      # print("num_steps:", num_steps)
      e_dev = dev_evaluate.get_evaluation_from_batches(
        sess, tqdm(dev_data.get_batches(config.test_batch_size, num_batches=num_steps), total=num_steps))
      if e_dev.fv > best_f1:
        best_f1 = e_dev.fv
        #if global_step % config.save_period == 0:
        graph_handler.save(sess, global_step=global_step)
      graph_handler.add_summaries(e_dev.summaries, global_step)
  print("f1:", best_f1)
예제 #3
0
def _train(config):
    np.set_printoptions(threshold=np.inf)
    train_data = read_data(config, 'train', config.load)
    dev_data = read_data(config, 'dev', True)
    update_config(config, [train_data, dev_data])

    _config_debug(config)

    word2vec_dict = train_data.shared[
        'lower_word2vec'] if config.lower_word else train_data.shared[
            'word2vec']
    word2idx_dict = train_data.shared['word2idx']
    idx2vec_dict = {
        word2idx_dict[word]: vec
        for word, vec in word2vec_dict.items() if word in word2idx_dict
    }
    emb_mat = np.array([
        idx2vec_dict[idx]
        if idx in idx2vec_dict else np.random.multivariate_normal(
            np.zeros(config.word_emb_size), np.eye(config.word_emb_size))
        for idx in range(config.word_vocab_size)
    ])
    config.emb_mat = emb_mat

    def make_idx2word():
        """
        return index of the word from the preprocessed dictionary. 
        """
        idx2word = {}
        d = train_data.shared['word2idx']
        for word, idx in d.items():
            print(word)
            idx2word[idx] = word
        if config.use_glove_for_unk:
            d2 = train_data.shared['new_word2idx']
            for word, idx in d2.items():
                print(word)
                idx2word[idx + len(d)] = word
        return idx2word

    idx2word = make_idx2word()
    # Save total number of words used in this dictionary: words in GloVe + etc tokens(including UNK, POS, ... etc)
    print("size of config.id2word len:", len(idx2word))
    print("size of config.total_word_vocab_size:",
          config.total_word_vocab_size)

    # construct model graph and variables (using default graph)
    pprint(config.__flags, indent=2)
    models = get_multi_gpu_models(config)
    model = models[0]
    print("num params: {}".format(get_num_params()))
    trainer = MultiGPUTrainer(config, models)
    evaluator = MultiGPUEvaluator(
        config, models, tensor_dict=model.tensor_dict if config.vis else None)
    graph_handler = GraphHandler(
        config, model
    )  # controls all tensors and variables in the graph, including loading /saving

    # Variables
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    graph_handler.initialize(sess)

    num_steps = config.num_steps or int(
        math.ceil(train_data.num_examples /
                  (config.batch_size * config.num_gpus))) * config.num_epochs
    min_val = {}
    min_val['loss'] = 100.0
    min_val['acc'] = 0
    min_val['step'] = 0
    min_val['patience'] = 0

    for batches in tqdm(train_data.get_multi_batches(config.batch_size,
                                                     config.num_gpus,
                                                     num_steps=num_steps,
                                                     shuffle=True,
                                                     cluster=config.cluster),
                        total=num_steps):
        global_step = sess.run(
            model.global_step
        ) + 1  # +1 because all calculations are done after step
        get_summary = global_step % config.log_period == 0
        loss, summary, train_op = trainer.step(sess,
                                               batches,
                                               get_summary=get_summary)
        if get_summary:
            graph_handler.add_summary(summary, global_step)

        # occasional saving
        if global_step % config.save_period == 0:
            graph_handler.save(sess, global_step=global_step)

        if not config.eval:
            continue
        # Occasional evaluation
        if global_step % config.eval_period == 0:
            num_steps = math.ceil(dev_data.num_examples /
                                  (config.batch_size * config.num_gpus))

            # num_steps: total steps to finish this training session.
            # val_num_batches: 100
            if 0 < config.val_num_batches < num_steps:
                # if config.val_num_batches is less the the actual steps required to run whole dev set. Run evaluation up to the step.
                num_steps = config.val_num_batches

            # This train loss is calulated from sampling the same number of data size of dev_data.

            e_train = evaluator.get_evaluation_from_batches(
                sess,
                tqdm(train_data.get_multi_batches(config.batch_size,
                                                  config.num_gpus,
                                                  num_steps=num_steps),
                     total=num_steps))
            graph_handler.add_summaries(e_train.summaries, global_step)

            # This e_dev may differ from the dev_set used in test time because some data is filtered out here.
            e_dev = evaluator.get_evaluation_from_batches(
                sess,
                tqdm(dev_data.get_multi_batches(config.batch_size,
                                                config.num_gpus,
                                                num_steps=num_steps),
                     total=num_steps))
            graph_handler.add_summaries(e_dev.summaries, global_step)
            print("%s e_train: loss=%.4f" % (header, e_train.loss))
            print("%s e_dev: loss=%.4f" % (header, e_dev.loss))
            print()
            if min_val['loss'] > e_dev.loss:
                min_val['loss'] = e_dev.loss
                min_val['step'] = global_step
                min_val['patience'] = 0
            else:
                min_val['patience'] = min_val['patience'] + 1
                if min_val['patience'] >= 1000:
                    slack.notify(
                        text="%s patience reached %d. early stopping." %
                        (header, min_val['patience']))
                    break

            slack.notify(text="%s e_dev: loss=%.4f" % (header, e_dev.loss))

            if config.dump_eval:
                graph_handler.dump_eval(e_dev)
            if config.dump_answer:
                graph_handler.dump_answer(e_dev)

    slack.notify(
        text=
        "%s <@U024BE7LH|insikk> Train is finished. e_dev: loss=%.4f at step=%d\nPlease assign another task to get more research result"
        % (header, min_val['loss'], min_val['step']))

    if global_step % config.save_period != 0:
        graph_handler.save(sess, global_step=global_step)
예제 #4
0
def _train(config):
    word2idx = Counter(
        json.load(
            open(
                "data/{}/word2idx_{}.json".format(config.data_from,
                                                  config.data_from),
                "r"))["word2idx"])
    vocab_size = len(word2idx)
    print("vocab_size", vocab_size)
    word2vec = Counter(
        json.load(
            open(
                "data/{}/word2vec_{}.json".format(config.data_from,
                                                  config.pretrain_from),
                "r"))["word2vec"])
    # word2vec = {} if config.debug or config.load  else get_word2vec(config, word2idx)
    idx2vec = {
        word2idx[word]: vec
        for word, vec in word2vec.items() if word in word2idx and word != "UNK"
    }
    unk_embedding = np.random.multivariate_normal(
        np.zeros(config.word_embedding_size),
        np.eye(config.word_embedding_size))
    config.emb_mat = np.array([
        idx2vec[idx] if idx in idx2vec else unk_embedding
        for idx in range(vocab_size)
    ])
    config.vocab_size = vocab_size
    print("emb_mat:", config.emb_mat.shape)

    train_dict, test_dict = {}, {}
    if os.path.exists("data/{}/{}_{}.json".format(config.data_from,
                                                  config.data_from, "train")):
        train_dict = json.load(
            open(
                "data/{}/{}_{}.json".format(config.data_from, config.data_from,
                                            "train"), "r"))
    if os.path.exists("data/{}/{}_{}.json".format(config.data_from,
                                                  config.data_from, "test")):
        test_dict = json.load(
            open(
                "data/{}/{}_{}.json".format(config.data_from, config.data_from,
                                            "test"), "r"))
    # check

    if config.data_from == "reuters":
        train_data = DataSet(train_dict,
                             "train") if len(train_dict) > 0 else read_reuters(
                                 config, data_type="train", word2idx=word2idx)
        dev_data = DataSet(test_dict,
                           "test") if len(test_dict) > 0 else read_reuters(
                               config, data_type="test", word2idx=word2idx)
    elif config.data_from == "20newsgroup":
        train_data = DataSet(train_dict,
                             "train") if len(train_dict) > 0 else read_news(
                                 config, data_type="train", word2idx=word2idx)
        dev_data = DataSet(test_dict,
                           "test") if len(test_dict) > 0 else read_news(
                               config, data_type="test", word2idx=word2idx)

    config.train_size = train_data.get_data_size()
    config.dev_size = dev_data.get_data_size()
    print("train/dev:", config.train_size, config.dev_size)
    if config.max_docs_length > 2000: config.max_docs_length = 2000
    pprint(config.__flags, indent=2)
    model = get_model(config)
    graph_handler = GraphHandler(config, model)
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    graph_handler.initialize(sess)

    num_batches = config.num_batches or int(
        math.ceil(
            train_data.num_examples / config.batch_size)) * config.num_epochs
    global_step = 0

    dev_evaluate = Evaluator(config, model)

    for batch in tqdm(train_data.get_batches(config.batch_size,
                                             num_batches=num_batches,
                                             shuffle=True,
                                             cluster=config.cluster),
                      total=num_batches):
        batch_idx, batch_ds = batch
        '''
    if config.debug:
      for key, value in batch_ds.data.items():
        if not key.startswith("x"):
          print(key, value)
      continue
    '''
        global_step = sess.run(model.global_step) + 1
        # print("global_step:", global_step)
        get_summary = global_step % config.log_period
        feed_dict = model.get_feed_dict(batch, config)
        logits, y, y_len, loss, summary, train_op = sess.run(
            [
                model.logits, model.y, model.y_seq_length, model.loss,
                model.summary, model.train_op
            ],
            feed_dict=feed_dict)
        #print("logits:", logits[0:3], y[0:3], y_len[0:3], logits.shape, y.shape, y_len.shape)
        print("loss:", loss)
        if get_summary:
            graph_handler.add_summary(summary, global_step)
        # occasional saving
        if global_step % config.save_period == 0:
            graph_handler.save(sess, global_step=global_step)
        if not config.eval:
            continue
        # Occasional evaluation
        if global_step % config.eval_period == 0:
            #config.test_batch_size = config.dev_size/3
            num_steps = math.ceil(dev_data.num_examples /
                                  config.test_batch_size)
            if 0 < config.val_num_batches < num_steps:
                num_steps = config.val_num_batches
            # print("num_steps:", num_steps)
            e_dev = dev_evaluate.get_evaluation_from_batches(
                sess,
                tqdm(dev_data.get_batches(config.test_batch_size,
                                          num_batches=num_steps),
                     total=num_steps))
            graph_handler.add_summaries(e_dev.summaries, global_step)