def remove_redundant_edges_from_tree(g, tree, r, terminals): """given a set of edges, a root, and terminals to cover, return a new tree with redundant edges removed""" efilt = g.new_edge_property('bool') for u, v in tree: efilt[g.edge(u, v)] = True tree = GraphView(g, efilt=efilt) # remove redundant edges min_tree_efilt = g.new_edge_property('bool') min_tree_efilt.set_2d_array(np.zeros(g.num_edges())) for o in terminals: if o != r: tree.vertex(r) tree.vertex(o) _, edge_list = shortest_path(tree, source=tree.vertex(r), target=tree.vertex(o)) assert len(edge_list) > 0, 'unable to reach {} from {}'.format( o, r) for e in edge_list: min_tree_efilt[e] = True min_tree = GraphView(g, efilt=min_tree_efilt) return min_tree
def is_order_respected(tree, root, obs_nodes, infection_times): tree = GraphView(tree) obs_set = set(obs_nodes) vfilt = tree.new_vertex_property('bool') vfilt.a = True tree.set_vertex_filter(vfilt) leaves = [o for o in obs_nodes if tree.vertex(o).out_degree() == 0] vis = init_visitor(tree, root) pbfs_search(tree, root, terminals=leaves, visitor=vis, count_threshold=-1) for l in leaves: edges = extract_edges_from_pred(tree, root, l, vis.pred) edges = edges[::-1] path = list(edges[0]) + [u for _, u in edges[1:]] useful_nodes_on_path = [v for v in path if v in obs_set] for i in range(len(useful_nodes_on_path)-1): u, v = useful_nodes_on_path[i: i+2] if infection_times[u] > infection_times[v]: return False return True
def find_tree_by_closure(g, root, infection_times, terminals, closure_builder=build_closure_with_order, strictly_smaller=True, return_closure=False, k=-1, debug=False, verbose=True): """find the steiner tree by trainsitive closure """ gc, eweight = closure_builder(g, root, terminals, infection_times, strictly_smaller=strictly_smaller, k=k, return_r2pred=False, debug=debug, verbose=verbose) # get the minimum spanning arborescence # graph_tool does not provide minimum_spanning_arborescence if verbose: print('getting mst') tree_edges = find_minimum_branching(gc, [root], weights=eweight) efilt = gc.new_edge_property('bool') efilt.a = False for u, v in tree_edges: efilt[gc.edge(u, v)] = True mst_tree = GraphView(gc, efilt=efilt) if verbose: print('extract edges from original graph') # extract the edges from the original graph # sort observations by time # and also topological order # why doing this: we want to start collecting the edges # for nodes with higher order topological_index = {} for i, e in enumerate(bfs_iterator(mst_tree, source=root)): topological_index[int(e.target())] = i try: sorted_obs = sorted(set(terminals) - {root}, key=lambda o: (infection_times[o], topological_index[o])) except KeyError: raise TreeNotFound( "it's likely that the input cannot produce a feasible solution, " + "because the topological sort on terminals does not visit all terminals" ) # next, we start reconstructing the minimum steiner arborescence tree_nodes = {root} tree_edges = set() # print('root', root) for u in sorted_obs: if u in tree_nodes: if debug: print('{} covered already'.format(u)) continue # print(u) v, u = map(int, next(mst_tree.vertex(u).in_edges())) # v is ancestor tree_nodes.add(v) late_nodes = [ n for n in terminals if infection_times[n] > infection_times[u] ] vis = init_visitor(g, u) # from child to any tree node, including v cpbfs_search(g, source=u, terminals=list(tree_nodes), forbidden_nodes=late_nodes, visitor=vis, count_threshold=1) # dist, pred = shortest_distance(g, source=u, pred_map=True) node_set = {v for v, d in vis.dist.items() if d > 0} reachable_tree_nodes = node_set.intersection(tree_nodes) ancestor = min(reachable_tree_nodes, key=vis.dist.__getitem__) edges = extract_edges_from_pred(g, u, ancestor, vis.pred) edges = {(j, i) for i, j in edges} # need to reverse it if debug: print('tree_nodes', tree_nodes) print('connecting {} to {}'.format(v, u)) print('using ancestor {}'.format(ancestor)) print('adding edges {}'.format(edges)) tree_nodes |= {u for e in edges for u in e} tree_edges |= edges t = Graph(directed=True) t.add_vertex(g.num_vertices()) for u, v in tree_edges: t.add_edge(t.vertex(u), t.vertex(v)) tree_nodes = {u for e in tree_edges for u in e} vfilt = t.new_vertex_property('bool') vfilt.a = False for v in tree_nodes: vfilt[t.vertex(v)] = True t.set_vertex_filter(vfilt) if return_closure: return t, gc, mst_tree else: return t