def manual_eval(num_eval): with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=FLAGS.log_device_placement)) as sess: # Create model and load parameters. _, model_sig = graph_utils.get_model_signature(FLAGS) _, rev_nl_vocab, _, rev_cm_vocab = data_utils.load_vocab(FLAGS) _, dev_set, _ = load_data(use_buckets=False) eval_tools.manual_eval(model_sig, dev_set, rev_nl_vocab, FLAGS, FLAGS.model_dir, num_eval)
def eval(data_set, model_sig=None, verbose=True): with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=FLAGS.log_device_placement)) as sess: if model_sig is None: _, model_sig = graph_utils.get_model_signature(FLAGS) print("evaluate " + model_sig + "...") _, rev_nl_vocab, _, rev_cm_vocab = data_utils.load_vocab(FLAGS) return eval_tools.eval_set(model_sig, data_set, rev_nl_vocab, FLAGS, verbose=verbose)