def build(self, hiddens=[16], activations=['relu'], dropout=0.5, lr=0.01, weight_decay=5e-4, use_bias=False, p1=1., p2=1., n_power_iterations=1, epsilon=0.03, xi=1e-6): if self.backend == "tensorflow": with tf.device(self.device): self.model = tfGCN(self.graph.num_node_attrs, self.graph.num_node_classes, hiddens=hiddens, activations=activations, dropout=dropout, weight_decay=weight_decay, lr=lr, use_bias=use_bias) self.index_all = tf.range(self.graph.num_nodes, dtype=self.intx) else: raise NotImplementedError self.p1 = p1 # Alpha self.p2 = p2 # Beta self.xi = xi # Small constant for finite difference # Norm length for (virtual) adversarial training self.epsilon = epsilon self.n_power_iterations = n_power_iterations # Number of power iterations
def build(self, hiddens=[16], activations=['relu'], dropout=0.5, weight_decay=5e-4, lr=0.01, use_bias=False): if self.backend == "tensorflow": with tf.device(self.device): self.model = tfGCN(self.graph.num_node_attrs, self.graph.num_node_classes, hiddens=hiddens, activations=activations, dropout=dropout, weight_decay=weight_decay, lr=lr, use_bias=use_bias) else: self.model = pyGCN(self.graph.num_node_attrs, self.graph.num_node_classes, hiddens=hiddens, activations=activations, dropout=dropout, weight_decay=weight_decay, lr=lr, use_bias=use_bias).to(self.device)
def build(self, hiddens=[16], activations=['relu'], dropout=0.5, lr=0.01, weight_decay=5e-4, use_bias=False, p1=1., p2=1., n_power_iterations=1, epsilon=0.03, xi=1e-6): with tf.device(self.device): self.model = tfGCN(self.graph.num_node_attrs, self.graph.num_node_classes, hiddens=hiddens, activations=activations, dropout=dropout, weight_decay=weight_decay, lr=lr, use_bias=use_bias) self.register_cache( "index_all", tf.range(self.graph.num_nodes, dtype=self.intx)) self.register_cache("p1", p1) # Alpha self.register_cache("p2", p2) # Beta self.register_cache("xi", xi) # Small constant for finite difference # Norm length for (virtual) adversarial training self.register_cache("epsilon", epsilon) self.register_cache("n_power_iterations", n_power_iterations) # Number of power iterations
def build(self, hiddens=[32], activations=['relu'], dropout=0.5, weight_decay=0., lr=0.01, use_bias=False): with tf.device(self.device): self.model = tfGCN(self.graph.num_node_attrs, self.graph.num_node_classes, hiddens=hiddens, activations=activations, dropout=dropout, weight_decay=weight_decay, lr=lr, use_bias=use_bias, experimental_run_tf_function=False)