def test_from_igraph_invalid_attribute(): n = 100 m = 500 K = np.zeros((n, n)) for _ in range(m): e = np.random.choice(n, 2, replace=False) K[e[0], e[1]] = K[e[1], e[0]] = 1 g = igraph.Graph.Adjacency(K.tolist()) G = graphtools.from_igraph(g, attribute="invalid")
def test_from_igraph_weighted(): n = 100 m = 500 K = np.zeros((n, n)) for _ in range(m): e = np.random.choice(n, 2, replace=False) K[e[0], e[1]] = K[e[1], e[0]] = np.random.uniform(0, 1) g = igraph.Graph.Weighted_Adjacency(K.tolist()) G = graphtools.from_igraph(g) G2 = graphtools.Graph(K, precomputed="adjacency") assert np.all(G.K == G2.K)
def test_from_igraph(): n = 100 m = 500 K = np.zeros((n, n)) for _ in range(m): e = np.random.choice(n, 2, replace=False) K[e[0], e[1]] = K[e[1], e[0]] = 1 g = igraph.Graph.Adjacency(K.tolist()) G = graphtools.from_igraph(g, attribute=None) G2 = graphtools.Graph(K, precomputed="adjacency") assert np.all(G.K == G2.K)
def test_from_igraph_invalid_attribute(): with assert_warns_message( UserWarning, "Edge attribute invalid not found. Returning unweighted graph"): n = 100 m = 500 K = np.zeros((n, n)) for _ in range(m): e = np.random.choice(n, 2, replace=False) K[e[0], e[1]] = K[e[1], e[0]] = 1 g = igraph.Graph.Adjacency(K.tolist()) G = graphtools.from_igraph(g, attribute="invalid")
def test_from_igraph_invalid_precomputed(): with assert_warns_message( UserWarning, "Cannot build graph from igraph with precomputed=affinity. Use 'adjacency' instead.", ): n = 100 m = 500 K = np.zeros((n, n)) for _ in range(m): e = np.random.choice(n, 2, replace=False) K[e[0], e[1]] = K[e[1], e[0]] = 1 g = igraph.Graph.Adjacency(K.tolist()) G = graphtools.from_igraph(g, attribute=None, precomputed="affinity")