예제 #1
0
파일: test_models.py 프로젝트: zeou1/graspy
    def test_DCER_score(self):
        p_mat = self.p_mat
        graph = self.graph
        estimator = DCEREstimator()
        _test_score(estimator, p_mat, graph)

        with pytest.raises(ValueError):
            estimator.score_samples(graph=graph[1:500, 1:500])
예제 #2
0
파일: test_models.py 프로젝트: zeou1/graspy
    def test_DCER_inputs(self):
        with pytest.raises(TypeError):
            DCEREstimator(directed="hey")

        with pytest.raises(TypeError):
            DCEREstimator(loops=6)

        graph = er_np(100, 0.5)
        dcere = DCEREstimator()

        with pytest.raises(ValueError):
            dcere.fit(graph[:, :99])

        with pytest.raises(ValueError):
            dcere.fit(graph[..., np.newaxis])
예제 #3
0
파일: test_models.py 프로젝트: zeou1/graspy
    def test_DCER_sample(self):
        np.random.seed(8888)
        estimator = DCEREstimator(directed=True, loops=False)
        g = self.graph
        p_mat = self.p_mat
        with pytest.raises(NotFittedError):
            estimator.sample()

        estimator.fit(g)
        with pytest.raises(ValueError):
            estimator.sample(n_samples=-1)

        with pytest.raises(TypeError):
            estimator.sample(n_samples="nope")
        B = 0.5
        dc = np.random.uniform(0.25, 0.75, size=100)
        p_mat = np.outer(dc, dc) * B
        p_mat -= np.diag(np.diag(p_mat))
        g = sample_edges(p_mat, directed=True)
        estimator.fit(g)
        estimator.p_mat_ = p_mat
        _test_sample(estimator, p_mat, n_samples=1000, atol=0.2)
예제 #4
0
파일: test_models.py 프로젝트: zeou1/graspy
 def test_DCER_nparams(self):
     n_verts = 1000
     graph = self.graph
     e = DCEREstimator(directed=True)
     e.fit(graph)
     assert e._n_parameters() == (n_verts + 1)
    return null


def compute_pvalues(p_upper, null):
    row = {}
    row["estimated_p_upper"] = p_upper
    ind = np.searchsorted(null, p_upper)
    row["pvalue"] = 1 - ind / len(
        null)  # TODO make more exact but this is roughly right for one sided
    return row


edge_types = ["ad", "aa", "dd", "da"]
null_estimators = {
    "ER": EREstimator(directed=True, loops=False),
    "DCER": DCEREstimator(directed=True, loops=False, degree_directed=False),
}

rerun_test = False

if rerun_test:
    currtime = time.time()

    n_null_samples = 100
    statistics = []

    for edge_type in edge_types:
        print(f"Edge type = {edge_type}")
        edge_type_adj = mg.to_edge_type_graph(edge_type).adj
        edge_type_adj = binarize(edge_type_adj)
        largest_connected_component(edge_type_adj)