# SBM heatmap(sbm.p_mat_, ax=ax[0, 0], title="Probability matrix", **heatmap_kws) heatmap(np.squeeze(sbm.sample()), ax=ax[0, 1], title="Random sample", **heatmap_kws) ax[0, 0].set_ylabel("SBM", **side_label_kws) # DCSBM heatmap(dcsbm.p_mat_, ax=ax[1, 0], **heatmap_kws) heatmap(np.squeeze(dcsbm.sample()), ax=ax[1, 1], **heatmap_kws) ax[1, 0].set_ylabel("DCSBM", **side_label_kws) # RDPG heatmap(rdpg.p_mat_, ax=ax[2, 0], **heatmap_kws) heatmap(np.squeeze(rdpg.sample()), ax=ax[2, 1], **heatmap_kws) ax[2, 0].set_ylabel("RDPG", **side_label_kws) plt.tight_layout() # Add colorbar sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) sm.set_array(rdpg.p_mat_) cbar = fig.colorbar(sm, ax=ax, orientation="horizontal", pad=0.01, shrink=0.8, fraction=0.1) cbar.ax.tick_params(labelsize=16)
plt.savefig("DCSBMProbabilityMatrix", bbox_inches='tight') heatmap(dcsbme.sample()[0], inner_hier_labels=labels, title="DCSBM sample", font_scale=1.5, sort_nodes=True) plt.savefig("DCSBMSample", bbox_inches='tight') rdpge = RDPGEstimator(loops=False) rdpge.fit(adj, y=labels) heatmap(rdpge.p_mat_, inner_hier_labels=labels, vmin=0, vmax=1, font_scale=1.5, title="RDPG probability matrix", sort_nodes=True ) plt.savefig("RDPGProbabilityMatrix", bbox_inches='tight') heatmap(rdpge.sample()[0], inner_hier_labels=labels, font_scale=1.5, title="RDPG sample", sort_nodes=True) plt.savefig("RDPGSample", bbox_inches='tight')