def main():
    """
    Creates a hydrologically correct MODFLOW grid that inlcudes minimum
    DEM elevations for all stream cells and mean elevations everywhere else
    """
    """
    dem = 'DEM'
    grid = 'grid_tmp'
    streams = 'streams_tmp'
    streams_MODFLOW = 'streams_tmp_MODFLOW'
    DEM_MODFLOW = 'DEM_coarse'
    resolution = 500
    """

    options, flags = gscript.parser()
    dem = options['dem']
    grid = options['grid']
    streams = options['streams']
    #resolution = float(options['resolution'])
    streams_MODFLOW = options['streams_modflow']
    DEM_MODFLOW = options['dem_modflow']

    # Get number of rows and columns
    colNames = np.array(gscript.vector_db_select(grid, layer=1)['columns'])
    colValues = np.array(
        gscript.vector_db_select(grid, layer=1)['values'].values())
    cats = colValues[:, colNames == 'cat'].astype(int).squeeze()
    rows = colValues[:, colNames == 'row'].astype(int).squeeze()
    cols = colValues[:, colNames == 'col'].astype(int).squeeze()
    nRows = np.max(rows)
    nCols = np.max(cols)

    gscript.use_temp_region()

    # Set the region to capture only the channel
    g.region(raster=dem)
    v.to_rast(input=streams,
              output=streams_MODFLOW,
              use='val',
              value=1.0,
              type='line',
              overwrite=gscript.overwrite(),
              quiet=True)
    r.mapcalc('tmp' + " = " + streams_MODFLOW + " * " + dem, overwrite=True)
    g.rename(raster=('tmp', streams_MODFLOW), overwrite=True, quiet=True)
    g.region(vector=grid, rows=nRows, cols=nCols, quiet=True)
    r.resamp_stats(input=streams_MODFLOW,
                   output=streams_MODFLOW,
                   method='average',
                   overwrite=gscript.overwrite(),
                   quiet=True)
    r.resamp_stats(input=dem,
                   output=DEM_MODFLOW,
                   method='average',
                   overwrite=gscript.overwrite(),
                   quiet=True)
    r.patch(input=streams_MODFLOW + ',' + DEM_MODFLOW,
            output=DEM_MODFLOW,
            overwrite=True,
            quiet=True)
예제 #2
0
def main():
    """
    Creates a hydrologically correct MODFLOW grid that inlcudes minimum
    DEM elevations for all stream cells and mean elevations everywhere else
    """
    """
    dem = 'DEM'
    grid = 'grid_tmp'
    streams = 'streams_tmp'
    streams_MODFLOW = 'streams_tmp_MODFLOW'
    DEM_MODFLOW = 'DEM_coarse'
    resolution = 500
    """

    options, flags = gscript.parser()
    dem = options['dem']
    grid = options['grid']
    streams = options['streams']
    #resolution = float(options['resolution'])
    streams_MODFLOW = options['streams_modflow']
    DEM_MODFLOW = options['dem_modflow']

    gscript.use_temp_region()

    # Set the region to capture only the channel
    g.region(raster=dem)
    v.to_rast(input=streams,
              output=streams_MODFLOW,
              use='val',
              value=1.0,
              type='line',
              overwrite=gscript.overwrite(),
              quiet=True)
    r.mapcalc('tmp' + " = " + streams_MODFLOW + " * " + dem, overwrite=True)
    g.rename(raster=('tmp', streams_MODFLOW), overwrite=True, quiet=True)
    g.region(raster=DEM_MODFLOW, quiet=True)
    print "ALTERED"
    r.resamp_stats(input=streams_MODFLOW,
                   output=streams_MODFLOW,
                   method='average',
                   overwrite=gscript.overwrite(),
                   quiet=True)
    r.resamp_stats(input=dem,
                   output=DEM_MODFLOW,
                   method='average',
                   overwrite=gscript.overwrite(),
                   quiet=True)
    r.patch(input=streams_MODFLOW + ',' + DEM_MODFLOW,
            output=DEM_MODFLOW,
            overwrite=True,
            quiet=True)
예제 #3
0
def main():
    """
    Build gravity reservoirs in GSFLOW: combines MODFLOW grid and HRU sub-basins
    These define the PRMS soil zone that connects to MODFLOW cells
    """

    ##################
    # OPTION PARSING #
    ##################

    # I/O
    options, flags = gscript.parser()
    
    # I/O
    HRUs = options['hru_input']
    grid = options['grid_input']
    segments = options['output']
    #col = options['col']
    gravity_reservoirs = options['output']

    ############
    # ANALYSIS #
    ############

    """
    # Basin areas
    v.db_addcolumn(map=basins, columns=col)
    v.to_db(map=basins, option='area', units='meters', columns=col)
    """

    # Create gravity reservoirs -- overlay cells=grid and HRUs
    v.overlay(ainput=HRUs, binput=grid, atype='area', btype='area', operator='and', output=gravity_reservoirs, overwrite=gscript.overwrite())
    v.db_dropcolumn(map=gravity_reservoirs, columns='a_cat,a_label,b_cat', quiet=True)
    # Cell and HRU ID's
    v.db_renamecolumn(map=gravity_reservoirs, column=('a_id', 'gvr_hru_id'), quiet=True)
    v.db_renamecolumn(map=gravity_reservoirs, column=('b_id', 'gvr_cell_id'), quiet=True)
    # Percent areas
    v.db_renamecolumn(map=gravity_reservoirs, column=('a_hru_area_m2', 'hru_area_m2'), quiet=True)
    v.db_renamecolumn(map=gravity_reservoirs, column=('b_area_m2', 'cell_area_m2'), quiet=True)
    v.db_addcolumn(map=gravity_reservoirs, columns='area_m2 double precision', quiet=True)
    v.to_db(map=gravity_reservoirs, option='area', units='meters', columns='area_m2', quiet=True)
    v.db_addcolumn(map=gravity_reservoirs, columns='gvr_cell_pct double precision, gvr_hru_pct double precision', quiet=True)
    v.db_update(map=gravity_reservoirs, column='gvr_cell_pct', query_column='100*area_m2/cell_area_m2', quiet=True)
    v.db_update(map=gravity_reservoirs, column='gvr_hru_pct', query_column='100*area_m2/hru_area_m2', quiet=True)
    v.extract(input=gravity_reservoirs, output='tmp_', where="gvr_cell_pct > 0.001", overwrite=True, quiet=True)
    g.rename(vector=('tmp_',gravity_reservoirs), overwrite=True, quiet=True)
예제 #4
0
def main():
    """
    Builds a grid for the MODFLOW component of the USGS hydrologic model,
    GSFLOW.
    """

    options, flags = gscript.parser()
    basin = options['basin']
    pp = options['pour_point']
    raster_input = options['raster_input']
    dx = options['dx']
    dy = options['dy']
    grid = options['output']
    mask = options['mask_output']
    bc_cell = options['bc_cell']
    # basin='basins_tmp_onebasin'; pp='pp_tmp'; raster_input='DEM'; raster_output='DEM_coarse'; dx=dy='500'; grid='grid_tmp'; mask='mask_tmp'
    """
    # Fatal if raster input and output are not both set
    _lena0 = (len(raster_input) == 0)
    _lenb0 = (len(raster_output) == 0)
    if _lena0 + _lenb0 == 1:
        gscript.fatal("You must set both raster input and output, or neither.")
    """

    # Fatal if bc_cell set but mask and grid are false
    if bc_cell != '':
        if (mask == '') or (pp == ''):
            gscript.fatal(
                'Mask and pour point must be set to define b.c. cell')

    # Create grid -- overlaps DEM, three cells of padding
    gscript.use_temp_region()
    reg = gscript.region()
    reg_grid_edges_sn = np.linspace(reg['s'], reg['n'], reg['rows'])
    reg_grid_edges_we = np.linspace(reg['w'], reg['e'], reg['cols'])
    g.region(vector=basin, ewres=dx, nsres=dy)
    regnew = gscript.region()
    # Use a grid ratio -- don't match exactly the desired MODFLOW resolution
    grid_ratio_ns = np.round(regnew['nsres'] / reg['nsres'])
    grid_ratio_ew = np.round(regnew['ewres'] / reg['ewres'])
    # Get S, W, and then move the unit number of grid cells over to get N and E
    # and include 3 cells of padding around the whole watershed
    _s_dist = np.abs(reg_grid_edges_sn - (regnew['s'] - 3. * regnew['nsres']))
    _s_idx = np.where(_s_dist == np.min(_s_dist))[0][0]
    _s = float(reg_grid_edges_sn[_s_idx])
    _n_grid = np.arange(_s, reg['n'] + 3 * grid_ratio_ns * reg['nsres'],
                        grid_ratio_ns * reg['nsres'])
    _n_dist = np.abs(_n_grid - (regnew['n'] + 3. * regnew['nsres']))
    _n_idx = np.where(_n_dist == np.min(_n_dist))[0][0]
    _n = float(_n_grid[_n_idx])
    _w_dist = np.abs(reg_grid_edges_we - (regnew['w'] - 3. * regnew['ewres']))
    _w_idx = np.where(_w_dist == np.min(_w_dist))[0][0]
    _w = float(reg_grid_edges_we[_w_idx])
    _e_grid = np.arange(_w, reg['e'] + 3 * grid_ratio_ew * reg['ewres'],
                        grid_ratio_ew * reg['ewres'])
    _e_dist = np.abs(_e_grid - (regnew['e'] + 3. * regnew['ewres']))
    _e_idx = np.where(_e_dist == np.min(_e_dist))[0][0]
    _e = float(_e_grid[_e_idx])
    # Finally make the region
    g.region(w=str(_w),
             e=str(_e),
             s=str(_s),
             n=str(_n),
             nsres=str(grid_ratio_ns * reg['nsres']),
             ewres=str(grid_ratio_ew * reg['ewres']))
    # And then make the grid
    v.mkgrid(map=grid, overwrite=gscript.overwrite())

    # Cell numbers (row, column, continuous ID)
    v.db_addcolumn(map=grid, columns='id int', quiet=True)
    colNames = np.array(gscript.vector_db_select(grid, layer=1)['columns'])
    colValues = np.array(
        gscript.vector_db_select(grid, layer=1)['values'].values())
    cats = colValues[:, colNames == 'cat'].astype(int).squeeze()
    rows = colValues[:, colNames == 'row'].astype(int).squeeze()
    cols = colValues[:, colNames == 'col'].astype(int).squeeze()
    nrows = np.max(rows)
    ncols = np.max(cols)
    cats = np.ravel([cats])
    _id = np.ravel([ncols * (rows - 1) + cols])
    _id_cat = []
    for i in range(len(_id)):
        _id_cat.append((_id[i], cats[i]))
    gridTopo = VectorTopo(grid)
    gridTopo.open('rw')
    cur = gridTopo.table.conn.cursor()
    cur.executemany("update " + grid + " set id=? where cat=?", _id_cat)
    gridTopo.table.conn.commit()
    gridTopo.close()

    # Cell area
    v.db_addcolumn(map=grid, columns='area_m2', quiet=True)
    v.to_db(map=grid,
            option='area',
            units='meters',
            columns='area_m2',
            quiet=True)

    # Basin mask
    if len(mask) > 0:
        # Fine resolution region:
        g.region(n=reg['n'],
                 s=reg['s'],
                 w=reg['w'],
                 e=reg['e'],
                 nsres=reg['nsres'],
                 ewres=reg['ewres'])
        # Rasterize basin
        v.to_rast(input=basin,
                  output=mask,
                  use='val',
                  value=1,
                  overwrite=gscript.overwrite(),
                  quiet=True)
        # Coarse resolution region:
        g.region(w=str(_w),
                 e=str(_e),
                 s=str(_s),
                 n=str(_n),
                 nsres=str(grid_ratio_ns * reg['nsres']),
                 ewres=str(grid_ratio_ew * reg['ewres']))
        r.resamp_stats(input=mask,
                       output=mask,
                       method='sum',
                       overwrite=True,
                       quiet=True)
        r.mapcalc('tmp' + ' = ' + mask + ' > 0', overwrite=True, quiet=True)
        g.rename(raster=('tmp', mask), overwrite=True, quiet=True)
        r.null(map=mask, null=0, quiet=True)
        # Add mask location (1 vs 0) in the MODFLOW grid
        v.db_addcolumn(map=grid,
                       columns='basinmask double precision',
                       quiet=True)
        v.what_rast(map=grid, type='centroid', raster=mask, column='basinmask')
    """
    # Resampled raster
    if len(raster_output) > 0:
        r.resamp_stats(input=raster_input, output=raster_output, method='average', overwrite=gscript.overwrite(), quiet=True)
    """

    # Pour point
    if len(pp) > 0:
        v.db_addcolumn(map=pp,
                       columns=('row integer', 'col integer'),
                       quiet=True)
        v.build(map=pp, quiet=True)
        v.what_vect(map=pp,
                    query_map=grid,
                    column='row',
                    query_column='row',
                    quiet=True)
        v.what_vect(map=pp,
                    query_map=grid,
                    column='col',
                    query_column='col',
                    quiet=True)

    # Next point downstream of the pour point
    # Requires pp (always) and mask (sometimes)
    # Dependency set above w/ gscript.fatal
    if len(bc_cell) > 0:
        ########## NEED TO USE TRUE TEMPORARY FILE ##########
        # May not work with dx != dy!
        v.to_rast(input=pp, output='tmp', use='val', value=1, overwrite=True)
        r.buffer(input='tmp',
                 output='tmp',
                 distances=float(dx) * 1.5,
                 overwrite=True)
        r.mapcalc('tmp2 = if(tmp==2,1,null()) * ' + raster_input,
                  overwrite=True)
        g.rename(raster=('tmp2', 'tmp'), overwrite=True, quiet=True)
        #r.mapcalc('tmp = if(isnull('+raster_input+',0,(tmp == 2)))', overwrite=True)
        #g.region(rast='tmp')
        #r.null(map=raster_input,
        r.drain(input=raster_input,
                start_points=pp,
                output='tmp2',
                overwrite=True)
        r.mapcalc('tmp3 = tmp2 * tmp', overwrite=True, quiet=True)
        g.rename(raster=('tmp3', 'tmp'), overwrite=True, quiet=True)
        #r.null(map='tmp', setnull=0) # Not necessary: center point removed above
        r.to_vect(input='tmp',
                  output=bc_cell,
                  type='point',
                  column='z',
                  overwrite=gscript.overwrite(),
                  quiet=True)
        v.db_addcolumn(map=bc_cell,
                       columns=('row integer', 'col integer',
                                'x double precision', 'y double precision'),
                       quiet=True)
        v.build(map=bc_cell, quiet=True)
        v.what_vect(map=bc_cell, query_map=grid, column='row', \
                    query_column='row', quiet=True)
        v.what_vect(map=bc_cell, query_map=grid, column='col', \
                    query_column='col', quiet=True)
        v.to_db(map=bc_cell, option='coor', columns=('x,y'))

        # Find out if this is diagonal: finite difference works only N-S, W-E
        colNames = np.array(gscript.vector_db_select(pp, layer=1)['columns'])
        colValues = np.array(
            gscript.vector_db_select(pp, layer=1)['values'].values())
        pp_row = int(colValues[:, colNames == 'row'].astype(int).squeeze())
        pp_col = int(colValues[:, colNames == 'col'].astype(int).squeeze())
        colNames = np.array(
            gscript.vector_db_select(bc_cell, layer=1)['columns'])
        colValues = np.array(
            gscript.vector_db_select(bc_cell, layer=1)['values'].values())
        bc_row = int(colValues[:, colNames == 'row'].astype(int).squeeze())
        bc_col = int(colValues[:, colNames == 'col'].astype(int).squeeze())
        # Also get x and y while we are at it: may be needed later
        bc_x = float(colValues[:, colNames == 'x'].astype(float).squeeze())
        bc_y = float(colValues[:, colNames == 'y'].astype(float).squeeze())
        if (bc_row != pp_row) and (bc_col != pp_col):
            # If not diagonal, two possible locations that are adjacent
            # to the pour point
            _col1, _row1 = str(bc_col), str(pp_row)
            _col2, _row2 = str(pp_col), str(bc_row)
            # Check if either of these is covered by the basin mask
            _ismask_1 = gscript.vector_db_select(grid,
                                                 layer=1,
                                                 where='(row == ' + _row1 +
                                                 ') AND (col ==' + _col1 + ')',
                                                 columns='basinmask')
            _ismask_1 = int(_ismask_1['values'].values()[0][0])
            _ismask_2 = gscript.vector_db_select(grid,
                                                 layer=1,
                                                 where='(row == ' + _row2 +
                                                 ') AND (col ==' + _col2 + ')',
                                                 columns='basinmask')
            _ismask_2 = int(_ismask_2['values'].values()[0][0])
            # If both covered by mask, error
            if _ismask_1 and _ismask_2:
                gscript.fatal(
                    'All possible b.c. cells covered by basin mask.\n\
                             Contact the developer: awickert (at) umn(.)edu')
            # Otherwise, those that keep those that are not covered by basin
            # mask and set ...
            # ... wait, do we want the point that touches as few interior
            # cells as possible?
            # maybe just try setting both and seeing what happens for now!
            else:
                # Get dx and dy
                dx = gscript.region()['ewres']
                dy = gscript.region()['nsres']
                # Build tool to handle multiple b.c. cells?
                bcvect = vector.Vector(bc_cell)
                bcvect.open('rw')
                _cat_i = 2
                if not _ismask_1:
                    # _x should always be bc_x, but writing generalized code
                    _x = bc_x + dx * (int(_col1) - bc_col)  # col 1 at w edge
                    _y = bc_y - dy * (int(_row1) - bc_row)  # row 1 at n edge
                    point0 = Point(_x, _y)
                    bcvect.write(
                        point0,
                        cat=_cat_i,
                        attrs=(None, _row1, _col1, _x, _y),
                    )
                    bcvect.table.conn.commit()
                    _cat_i += 1
                if not _ismask_2:
                    # _y should always be bc_y, but writing generalized code
                    _x = bc_x + dx * (int(_col2) - bc_col)  # col 1 at w edge
                    _y = bc_y - dy * (int(_row2) - bc_row)  # row 1 at n edge
                    point0 = Point(_x, _y)
                    bcvect.write(
                        point0,
                        cat=_cat_i,
                        attrs=(None, _row2, _col2, _x, _y),
                    )
                    bcvect.table.conn.commit()
                # Build database table and vector geometry
                bcvect.build()
                bcvect.close()

    g.region(n=reg['n'],
             s=reg['s'],
             w=reg['w'],
             e=reg['e'],
             nsres=reg['nsres'],
             ewres=reg['ewres'])
예제 #5
0
               output=DEM,
               flags='a',
               overwrite=True)
    # No offmap flow
    r.watershed(elevation=DEM,
                flow=flow,
                accumulation=accumulation,
                flags='s',
                overwrite=True)
    r.mapcalc(accumulation_onmap + ' = if(' + accumulation + '>0,' +
              accumulation + ',null())',
              overwrite=True)
    r.mapcalc('tmp' + ' = if(isnull(' + accumulation_onmap + '),null(),' +
              DEM + ')',
              overwrite=True)
    g.rename(raster=('tmp', DEM), overwrite=True)
    # Ensure that null cells are shared -- should be unnecessary!
    r.mapcalc(accumulation_onmap + ' = if(isnull(' + DEM + '),null(),' +
              accumulation_onmap + ')',
              overwrite=True)
    # Repeat is sometimes needed
    r.mapcalc(DEM + ' = if(isnull(' + accumulation_onmap + '),null(),' + DEM +
              ')',
              overwrite=True)
    r.mapcalc(accumulation_onmap + ' = if(isnull(' + DEM + '),null(),' +
              accumulation_onmap + ')',
              overwrite=True)

# Set region
g.region(raster=DEM_original_import)
예제 #6
0
def main():

    elevation = options['elevation']
    slope = options['slope']
    flat_thres = float(options['flat_thres'])
    curv_thres = float(options['curv_thres'])
    filter_size = int(options['filter_size'])
    counting_size = int(options['counting_size'])
    nclasses = int(options['classes'])
    texture = options['texture']
    convexity = options['convexity']
    concavity = options['concavity']
    features = options['features']

    # remove mapset from output name in case of overwriting existing map
    texture = texture.split('@')[0]
    convexity = convexity.split('@')[0]
    concavity = concavity.split('@')[0]
    features = features.split('@')[0]

    # store current region settings
    global current_reg
    current_reg = parse_key_val(g.region(flags='pg', stdout_=PIPE).outputs.stdout)
    del current_reg['projection']
    del current_reg['zone']
    del current_reg['cells']

    # check for existing mask and backup if found
    global mask_test
    mask_test = gs.list_grouped(
        type='rast', pattern='MASK')[gs.gisenv()['MAPSET']]
    if mask_test:
        global original_mask
        original_mask = temp_map('tmp_original_mask')
        g.copy(raster=['MASK', original_mask])

    # error checking
    if flat_thres < 0:
        gs.fatal('Parameter thres cannot be negative')

    if filter_size % 2 == 0 or counting_size % 2 == 0:
        gs.fatal(
            'Filter or counting windows require an odd-numbered window size')

    if filter_size >= counting_size:
        gs.fatal(
            'Filter size needs to be smaller than the counting window size')
    
    if features != '' and slope == '':
        gs.fatal('Need to supply a slope raster in order to produce the terrain classification')
                
    # Terrain Surface Texture -------------------------------------------------
    # smooth the dem
    gs.message("Calculating terrain surface texture...")
    gs.message(
        "1. Smoothing input DEM with a {n}x{n} median filter...".format(
            n=filter_size))
    filtered_dem = temp_map('tmp_filtered_dem')
    gs.run_command("r.neighbors", input = elevation, method = "median",
                    size = filter_size, output = filtered_dem, flags='c',
                    quiet=True)

    # extract the pits and peaks based on the threshold
    pitpeaks = temp_map('tmp_pitpeaks')
    gs.message("2. Extracting pits and peaks with difference > thres...")
    r.mapcalc(expression='{x} = if ( abs({dem}-{median})>{thres}, 1, 0)'.format(
                x=pitpeaks, dem=elevation, thres=flat_thres, median=filtered_dem),
                quiet=True)

    # calculate density of pits and peaks
    gs.message("3. Using resampling filter to create terrain texture...")
    window_radius = (counting_size-1)/2
    y_radius = float(current_reg['ewres'])*window_radius
    x_radius = float(current_reg['nsres'])*window_radius
    resample = temp_map('tmp_density')
    r.resamp_filter(input=pitpeaks, output=resample, filter=['bartlett','gauss'],
                    radius=[x_radius,y_radius], quiet=True)

    # convert to percentage
    gs.message("4. Converting to percentage...")
    r.mask(raster=elevation, overwrite=True, quiet=True)
    r.mapcalc(expression='{x} = float({y} * 100)'.format(x=texture, y=resample),
               quiet=True)
    r.mask(flags='r', quiet=True)
    r.colors(map=texture, color='haxby', quiet=True)

    # Terrain convexity/concavity ---------------------------------------------
    # surface curvature using lacplacian filter
    gs.message("Calculating terrain convexity and concavity...")
    gs.message("1. Calculating terrain curvature using laplacian filter...")
    
    # grow the map to remove border effects and run laplacian filter
    dem_grown = temp_map('tmp_elevation_grown')
    laplacian = temp_map('tmp_laplacian')
    g.region(n=float(current_reg['n']) + (float(current_reg['nsres']) * filter_size),
             s=float(current_reg['s']) - (float(current_reg['nsres']) * filter_size),
             w=float(current_reg['w']) - (float(current_reg['ewres']) * filter_size),
             e=float(current_reg['e']) + (float(current_reg['ewres']) * filter_size))

    r.grow(input=elevation, output=dem_grown, radius=filter_size, quiet=True)
    r.mfilter(
        input=dem_grown, output=laplacian,
        filter=string_to_rules(laplacian_matrix(filter_size)), quiet=True)

    # extract convex and concave pixels
    gs.message("2. Extracting convexities and concavities...")
    convexities = temp_map('tmp_convexities')
    concavities = temp_map('tmp_concavities')

    r.mapcalc(
        expression='{x} = if({laplacian}>{thres}, 1, 0)'\
        .format(x=convexities, laplacian=laplacian, thres=curv_thres),
        quiet=True)
    r.mapcalc(
        expression='{x} = if({laplacian}<-{thres}, 1, 0)'\
        .format(x=concavities, laplacian=laplacian, thres=curv_thres),
        quiet=True)

    # calculate density of convexities and concavities
    gs.message("3. Using resampling filter to create surface convexity/concavity...")
    resample_convex = temp_map('tmp_convex')
    resample_concav = temp_map('tmp_concav')
    r.resamp_filter(input=convexities, output=resample_convex,
                    filter=['bartlett','gauss'], radius=[x_radius,y_radius],
                    quiet=True)
    r.resamp_filter(input=concavities, output=resample_concav,
                    filter=['bartlett','gauss'], radius=[x_radius,y_radius],
                    quiet=True)

    # convert to percentages
    gs.message("4. Converting to percentages...")
    g.region(**current_reg)
    r.mask(raster=elevation, overwrite=True, quiet=True)
    r.mapcalc(expression='{x} = float({y} * 100)'.format(x=convexity, y=resample_convex),
               quiet=True)
    r.mapcalc(expression='{x} = float({y} * 100)'.format(x=concavity, y=resample_concav),
               quiet=True)
    r.mask(flags='r', quiet=True)

    # set colors
    r.colors_stddev(map=convexity, quiet=True)
    r.colors_stddev(map=concavity, quiet=True)

    # Terrain classification Flowchart-----------------------------------------
    if features != '':
        gs.message("Performing terrain surface classification...")
        # level 1 produces classes 1 thru 8
        # level 2 produces classes 5 thru 12
        # level 3 produces classes 9 thru 16
        if nclasses == 8: levels = 1
        if nclasses == 12: levels = 2
        if nclasses == 16: levels = 3

        classif = []
        for level in range(levels):
            # mask previous classes x:x+4
            if level != 0:
                min_cla = (4*(level+1))-4
                clf_msk = temp_map('tmp_clf_mask')
                rules = '1:{0}:1'.format(min_cla)
                r.recode(
                    input=classif[level-1], output=clf_msk,
                    rules=string_to_rules(rules), overwrite=True)
                r.mask(raster=clf_msk, flags='i', quiet=True, overwrite=True)

            # image statistics
            smean = r.univar(
                map=slope, flags='g', stdout_=PIPE).outputs.stdout.split(os.linesep)
            smean = [i for i in smean if i.startswith('mean=') is True][0].split('=')[1]

            cmean = r.univar(
                map=convexity, flags='g', stdout_=PIPE).outputs.stdout.split(os.linesep)
            cmean = [i for i in cmean if i.startswith('mean=') is True][0].split('=')[1]

            tmean = r.univar(
                map=texture, flags='g', stdout_=PIPE).outputs.stdout.split(os.linesep)
            tmean = [i for i in tmean if i.startswith('mean=') is True][0].split('=')[1]
            classif.append(temp_map('tmp_classes'))
            
            if level != 0:
                r.mask(flags='r', quiet=True)

            classification(level+1, slope, smean, texture, tmean,
                            convexity, cmean, classif[level])

        # combine decision trees
        merged = []
        for level in range(0, levels):
            if level > 0:
                min_cla = (4*(level+1))-4
                merged.append(temp_map('tmp_merged'))
                r.mapcalc(
                    expression='{x} = if({a}>{min}, {b}, {a})'.format(
                        x=merged[level], min=min_cla, a=merged[level-1],  b=classif[level]))
            else:
                merged.append(classif[level])
        g.rename(raster=[merged[-1], features], quiet=True)
        del TMP_RAST[-1]

    # Write metadata ----------------------------------------------------------
    history = 'r.terrain.texture '
    for key,val in options.iteritems():
        history += key + '=' + str(val) + ' '

    r.support(map=texture,
              title=texture,
              description='generated by r.terrain.texture',
              history=history)
    r.support(map=convexity,
              title=convexity,
              description='generated by r.terrain.texture',
              history=history)
    r.support(map=concavity,
              title=concavity,
              description='generated by r.terrain.texture',
              history=history)

    if features != '':
        r.support(map=features,
                  title=features,
                  description='generated by r.terrain.texture',
                  history=history)
        
        # write color and category rules to tempfiles                
        r.category(
            map=features,
            rules=string_to_rules(categories(nclasses)),
            separator='pipe')
        r.colors(
            map=features, rules=string_to_rules(colors(nclasses)), quiet=True)

    return 0
예제 #7
0
def compute_supply(
    base,
    recreation_spectrum,
    highest_spectrum,
    base_reclassification_rules,
    reclassified_base,
    reclassified_base_title,
    flow,
    aggregation,
    ns_resolution,
    ew_resolution,
    print_only=False,
    flow_column_name=None,
    vector=None,
    supply_filename=None,
    use_filename=None,
):
    """
    Parameters
    ----------
    recreation_spectrum:
        Map scoring access to and quality of recreation

    highest_spectrum :
        Expected is a map of areas with highest recreational value (category 9
        as per the report ... )

    base :
        Base land types map for final zonal statistics. Specifically to
        ESTIMAP's recrceation mapping algorithm

    base_reclassification_rules :
        Reclassification rules for the input base map

    reclassified_base :
        Name for the reclassified base cover map

    reclassified_base_title :
        Title for the reclassified base map

    ecosystem_types :

    flow :
        Map of visits, derived from the mobility function, depicting the
        number of people living inside zones 0, 1, 2, 3. Used as a cover map
        for zonal statistics.

    aggregation :

    ns_resolution :

    ew_resolution :

    statistics_filename :

    supply_filename :
        Name for CSV output file of the supply table

    use_filename :
        Name for CSV output file of the use table

    flow_column_name :
        Name for column to populate with 'flow' values

    vector :
        If 'vector' is given, a vector map of the 'flow' along with appropriate
        attributes will be produced.

    ? :
        Land cover class percentages in ROS9 (this is: relative percentage)

    output :
        Supply table (distribution of flow for each land cover class)

    Returns
    -------
    This function produces a map to base the production of a supply table in
    form of CSV.

    Examples
    --------
    """
    # Inputs
    flow_in_base = flow + "_" + base
    base_scores = base + ".scores"

    # Define lists and dictionaries to hold intermediate data
    statistics_dictionary = {}
    weighted_extents = {}
    flows = []

    # MASK areas of high quality recreation
    r.mask(raster=highest_spectrum, overwrite=True, quiet=True)

    # Reclassify land cover map to MAES ecosystem types
    r.reclass(
        input=base,
        rules=base_reclassification_rules,
        output=reclassified_base,
        quiet=True,
    )
    # add 'reclassified_base' to "remove_at_exit" after the reclassified maps!

    # Discard areas out of MASK
    temporary_reclassified_base = reclassified_base + "_temporary"
    copy_equation = EQUATION.format(result=temporary_reclassified_base,
                                    expression=reclassified_base)
    r.mapcalc(copy_equation, overwrite=True)
    g.rename(
        raster=(temporary_reclassified_base, reclassified_base),
        overwrite=True,
        quiet=True,
    )

    # Count flow within each land cover category
    r.stats_zonal(
        base=base,
        flags="r",
        cover=flow,
        method="sum",
        output=flow_in_base,
        overwrite=True,
        quiet=True,
    )
    remove_map_at_exit(flow_in_base)

    # Set colors for "flow" map
    r.colors(map=flow_in_base, color=MOBILITY_COLORS, quiet=True)

    # Parse aggregation raster categories and labels
    categories = grass.parse_command("r.category",
                                     map=aggregation,
                                     delimiter="\t")

    for category in categories:

        msg = "\n>>> Processing category '{c}' of aggregation map '{a}'"
        grass.verbose(_(msg.format(c=category, a=aggregation)))

        # Intermediate names

        cells = highest_spectrum + ".cells" + "." + category
        remove_map_at_exit(cells)

        extent = highest_spectrum + ".extent" + "." + category
        remove_map_at_exit(extent)

        weighted = highest_spectrum + ".weighted" + "." + category
        remove_map_at_exit(weighted)

        fractions = base + ".fractions" + "." + category
        remove_map_at_exit(fractions)

        flow_category = "_flow_" + category
        flow = base + flow_category
        remove_map_at_exit(flow)

        flow_in_reclassified_base = reclassified_base + "_flow"
        flow_in_category = reclassified_base + flow_category
        flows.append(flow_in_category)  # add to list for patching
        remove_map_at_exit(flow_in_category)

        # Output names

        msg = "*** Processing aggregation raster category: {r}"
        msg = msg.format(r=category)
        grass.debug(_(msg))
        # g.message(_(msg))

        # First, set region to extent of the aggregation map
        # and resolution to the one of the population map
        # Note the `-a` flag to g.region: ?
        # To safely modify the region: grass.use_temp_region()  # FIXME
        g.region(
            raster=aggregation,
            nsres=ns_resolution,
            ewres=ew_resolution,
            flags="a",
            quiet=True,
        )

        msg = "!!! Computational resolution matched to {raster}"
        msg = msg.format(raster=aggregation)
        grass.debug(_(msg))

        # Build MASK for current category & high quality recreation areas
        msg = " * Setting category '{c}' as a MASK"
        grass.verbose(_(msg.format(c=category, a=aggregation)))

        masking = "if( {spectrum} == {highest_quality_category} && "
        masking += "{aggregation} == {category}, "
        masking += "1, null() )"
        masking = masking.format(
            spectrum=recreation_spectrum,
            highest_quality_category=HIGHEST_RECREATION_CATEGORY,
            aggregation=aggregation,
            category=category,
        )
        masking_equation = EQUATION.format(result="MASK", expression=masking)
        grass.mapcalc(masking_equation, overwrite=True)

        # zoom to MASK
        g.region(zoom="MASK",
                 nsres=ns_resolution,
                 ewres=ew_resolution,
                 quiet=True)

        # Count number of cells within each land category
        r.stats_zonal(
            flags="r",
            base=base,
            cover=highest_spectrum,
            method="count",
            output=cells,
            overwrite=True,
            quiet=True,
        )
        cells_categories = grass.parse_command("r.category",
                                               map=cells,
                                               delimiter="\t")
        grass.debug(_("*** Cells: {c}".format(c=cells_categories)))

        # Build cell category and label rules for `r.category`
        cells_rules = "\n".join([
            "{0}:{1}".format(key, value)
            for key, value in cells_categories.items()
        ])

        # Discard areas out of MASK
        temporary_cells = cells + "_temporary"
        copy_equation = EQUATION.format(result=temporary_cells,
                                        expression=cells)
        r.mapcalc(copy_equation, overwrite=True)
        g.rename(
            raster=(temporary_cells, cells),
            overwrite=True,
            quiet=True,
        )

        # Reassign cell category labels
        r.category(
            map=cells,
            rules="-",
            stdin=cells_rules,
            separator=":",
        )

        # Compute extent of each land category
        extent_expression = "@{cells} * area()"
        extent_expression = extent_expression.format(cells=cells)
        extent_equation = EQUATION.format(result=extent,
                                          expression=extent_expression)
        r.mapcalc(extent_equation, overwrite=True)

        # Write extent figures as labels
        extent_figures_as_labels = extent + "_labeled"
        r.stats_zonal(
            flags="r",
            base=base,
            cover=extent,
            method="average",
            output=extent_figures_as_labels,
            overwrite=True,
            verbose=False,
            quiet=True,
        )
        g.rename(
            raster=(extent_figures_as_labels, extent),
            overwrite=True,
            quiet=True,
        )

        # Write land suitability scores as an ASCII file
        temporary_reclassified_base_map = temporary_filename(
            filename=reclassified_base)
        suitability_scores_as_labels = string_to_file(
            SUITABILITY_SCORES_LABELS,
            filename=temporary_reclassified_base_map)
        remove_files_at_exit(suitability_scores_as_labels)

        # Write scores as raster category labels
        r.reclass(
            input=base,
            output=base_scores,
            rules=suitability_scores_as_labels,
            overwrite=True,
            quiet=True,
            verbose=False,
        )
        remove_map_at_exit(base_scores)

        # Compute weighted extents
        weighted_expression = "@{extent} * float(@{scores})"
        weighted_expression = weighted_expression.format(extent=extent,
                                                         scores=base_scores)
        weighted_equation = EQUATION.format(result=weighted,
                                            expression=weighted_expression)
        r.mapcalc(weighted_equation, overwrite=True)

        # Write weighted extent figures as labels
        weighted_figures_as_labels = weighted + "_figures_as_labels"
        r.stats_zonal(
            flags="r",
            base=base,
            cover=weighted,
            method="average",
            output=weighted_figures_as_labels,
            overwrite=True,
            verbose=False,
            quiet=True,
        )
        g.rename(raster=(weighted_figures_as_labels, weighted),
                 overwrite=True,
                 quiet=True)

        # Get weighted extents in a dictionary
        weighted_extents = grass.parse_command("r.category",
                                               map=weighted,
                                               delimiter="\t")

        # Compute the sum of all weighted extents and add to dictionary
        category_sum = sum([
            float(x) if not math.isnan(float(x)) else 0
            for x in weighted_extents.values()
        ])
        weighted_extents["sum"] = category_sum

        # Create a map to hold fractions of each weighted extent to the sum
        # See also:
        # https://grasswiki.osgeo.org/wiki/LANDSAT#Hint:_Minimal_disk_space_copies
        r.reclass(
            input=base,
            output=fractions,
            rules="-",
            stdin="*=*",
            verbose=False,
            quiet=True,
        )

        # Compute weighted fractions of land types
        fraction_category_label = {
            key: float(value) / weighted_extents["sum"]
            for (key, value) in weighted_extents.items() if key is not "sum"
        }

        # Build fraction category and label rules for `r.category`
        fraction_rules = "\n".join([
            "{0}:{1}".format(key, value)
            for key, value in fraction_category_label.items()
        ])

        # Set rules
        r.category(map=fractions,
                   rules="-",
                   stdin=fraction_rules,
                   separator=":")

        # Assert that sum of fractions is ~1
        fraction_categories = grass.parse_command("r.category",
                                                  map=fractions,
                                                  delimiter="\t")

        fractions_sum = sum([
            float(x) if not math.isnan(float(x)) else 0
            for x in fraction_categories.values()
        ])
        msg = "*** Fractions: {f}".format(f=fraction_categories)
        grass.debug(_(msg))

        # g.message(_("Sum: {:.17g}".format(fractions_sum)))
        assert abs(fractions_sum - 1) < 1.0e-6, "Sum of fractions is != 1"

        # Compute flow
        flow_expression = "@{fractions} * @{flow}"
        flow_expression = flow_expression.format(fractions=fractions,
                                                 flow=flow_in_base)
        flow_equation = EQUATION.format(result=flow,
                                        expression=flow_expression)
        r.mapcalc(flow_equation, overwrite=True)

        # Write flow figures as raster category labels
        r.stats_zonal(
            base=reclassified_base,
            flags="r",
            cover=flow,
            method="sum",
            output=flow_in_category,
            overwrite=True,
            verbose=False,
            quiet=True,
        )

        # Parse flow categories and labels
        flow_categories = grass.parse_command(
            "r.category",
            map=flow_in_category,
            delimiter="\t",
            quiet=True,
        )
        grass.debug(_("*** Flow: {c}".format(c=flow_categories)))

        # Build flow category and label rules for `r.category`
        flow_rules = "\n".join([
            "{0}:{1}".format(key, value)
            for key, value in flow_categories.items()
        ])

        # Discard areas out of MASK

        # Check here again!
        # Output patch of all flow maps?

        temporary_flow_in_category = flow_in_category + "_temporary"
        copy_equation = EQUATION.format(result=temporary_flow_in_category,
                                        expression=flow_in_category)
        r.mapcalc(copy_equation, overwrite=True)
        g.rename(
            raster=(temporary_flow_in_category, flow_in_category),
            overwrite=True,
            quiet=True,
        )

        # Reassign cell category labels
        r.category(
            map=flow_in_category,
            rules="-",
            stdin=flow_rules,
            separator=":",
            quiet=True,
        )

        # Update title
        reclassified_base_title += " " + category
        r.support(flow_in_category, title=reclassified_base_title)

        # debugging
        # r.report(
        #     flags='hn',
        #     map=(flow_in_category),
        #     units=('k','c','p'),
        # )

        if print_only:

            grass.verbose(" * Flow in category {c}:".format(c=category))
            r.stats(
                input=(flow_in_category),
                output="-",
                flags="nacpl",
                separator=COMMA,
                quiet=True,
            )

        if not print_only:

            if flow_column_name:
                flow_column_prefix = flow_column_name + '_' + category
            else:
                flow_column_name = "flow"
                flow_column_prefix = flow_column_name + '_' + category

            # Produce vector map(s)
            if vector:

                update_vector(
                    vector=vector,
                    raster=flow_in_category,
                    methods=METHODS,
                    column_prefix=flow_column_prefix,
                )

                # update columns of an user-fed vector map
                # from the columns of vectorised flow-in-category raster map
                raster_to_vector(
                    raster_category_flow=flow_in_category,
                    vector_category_flow=flow_in_category,
                    flow_column_name=flow_column_name,
                    category=category,
                    type="area",
                )

            # get statistics
            dictionary = get_raster_statistics(
                map_one=aggregation,  # reclassified_base
                map_two=flow_in_category,
                separator="|",
                flags="nlcap",
            )

            # merge 'dictionary' with global 'statistics_dictionary'
            statistics_dictionary = merge_two_dictionaries(
                statistics_dictionary, dictionary)

        # It is important to remove the MASK!
        r.mask(flags="r", quiet=True)

    # Add the "reclassified_base" map to "remove_at_exit" here,
    # so as to be after all reclassified maps that derive from it
    remove_map_at_exit(reclassified_base)

    if not print_only:
        g.region(
            raster=aggregation,
            nsres=ns_resolution,
            ewres=ew_resolution,
            flags="a",
            quiet=True,
        )
        r.patch(
            flags="",
            input=flows,
            output=flow_in_reclassified_base,
            quiet=True,
        )
        remove_map_at_exit(flow_in_reclassified_base)

        if vector:
            # Patch all flow vector maps in one
            v.patch(
                flags="e",
                input=flows,
                output=flow_in_reclassified_base,
                overwrite=True,
                quiet=True,
            )

        # export to csv
        if supply_filename:
            nested_dictionary_to_csv(supply_filename, statistics_dictionary)

        if use_filename:
            uses = compile_use_table(statistics_dictionary)
            dictionary_to_csv(use_filename, uses)

    # Maybe return list of flow maps?  Requires unique flow map names
    return flows
예제 #8
0
def main():
    # options and flags
    options, flags = gs.parser()
    input_raster = options["input"]
    minradius = int(options["minradius"])
    maxradius = int(options["maxradius"])
    steps = int(options["steps"])
    output_raster = options["output"]

    region = Region()
    res = np.mean([region.nsres, region.ewres])

    # some checks
    if "@" in output_raster:
        output_raster = output_raster.split("@")[0]

    if maxradius <= minradius:
        gs.fatal("maxradius must be greater than minradius")

    if steps < 2:
        gs.fatal("steps must be greater than 1")

    # calculate radi for generalization
    radi = np.logspace(np.log(minradius),
                       np.log(maxradius),
                       steps,
                       base=np.exp(1),
                       dtype=np.int)
    radi = np.unique(radi)
    sizes = radi * 2 + 1

    # multiscale calculation
    ztpi_maps = list()

    for step, (radius, size) in enumerate(zip(radi[::-1], sizes[::-1])):
        gs.message(
            "Calculating the TPI at radius {radius}".format(radius=radius))

        # generalize the dem
        step_res = res * size
        step_res_pretty = str(step_res).replace(".", "_")
        generalized_dem = gs.tempname(4)

        if size > 15:
            step_dem = gs.tempname(4)
            gg.region(res=str(step_res))
            gr.resamp_stats(
                input=input_raster,
                output=step_dem,
                method="average",
                flags="w",
            )
            gr.resamp_rst(
                input=step_dem,
                ew_res=res,
                ns_res=res,
                elevation=generalized_dem,
                quiet=True,
            )
            region.write()
            gg.remove(type="raster", name=step_dem, flags="f", quiet=True)
        else:
            gr.neighbors(input=input_raster, output=generalized_dem, size=size)

        # calculate the tpi
        tpi = gs.tempname(4)
        gr.mapcalc(expression="{x} = {a} - {b}".format(
            x=tpi, a=input_raster, b=generalized_dem))
        gg.remove(type="raster", name=generalized_dem, flags="f", quiet=True)

        # standardize the tpi
        raster_stats = gr.univar(map=tpi, flags="g",
                                 stdout_=PIPE).outputs.stdout
        raster_stats = parse_key_val(raster_stats)
        tpi_mean = float(raster_stats["mean"])
        tpi_std = float(raster_stats["stddev"])
        ztpi = gs.tempname(4)
        ztpi_maps.append(ztpi)
        RAST_REMOVE.append(ztpi)

        gr.mapcalc(expression="{x} = ({a} - {mean})/{std}".format(
            x=ztpi, a=tpi, mean=tpi_mean, std=tpi_std))
        gg.remove(type="raster", name=tpi, flags="f", quiet=True)

        # integrate
        if step > 1:
            tpi_updated2 = gs.tempname(4)
            gr.mapcalc("{x} = if(abs({a}) > abs({b}), {a}, {b})".format(
                a=ztpi_maps[step], b=tpi_updated1, x=tpi_updated2))
            RAST_REMOVE.append(tpi_updated2)
            tpi_updated1 = tpi_updated2
        else:
            tpi_updated1 = ztpi_maps[0]

    RAST_REMOVE.pop()
    gg.rename(raster=(tpi_updated2, output_raster), quiet=True)

    # set color theme
    with RasterRow(output_raster) as src:
        color_rules = """{minv} blue
            -1 0:34:198
            0 255:255:255
            1 255:0:0
            {maxv} 110:15:0
            """
        color_rules = color_rules.format(minv=src.info.min, maxv=src.info.max)
        gr.colors(map=output_raster, rules="-", stdin_=color_rules, quiet=True)
예제 #9
0
def main():
    """
    Builds a grid for the MODFLOW component of the USGS hydrologic model,
    GSFLOW.
    """

    options, flags = gscript.parser()
    basin = options["basin"]
    pp = options["pour_point"]
    raster_input = options["raster_input"]
    dx = options["dx"]
    dy = options["dy"]
    grid = options["output"]
    mask = options["mask_output"]
    bc_cell = options["bc_cell"]
    # basin='basins_tmp_onebasin'; pp='pp_tmp'; raster_input='DEM'; raster_output='DEM_coarse'; dx=dy='500'; grid='grid_tmp'; mask='mask_tmp'
    """
    # Fatal if raster input and output are not both set
    _lena0 = (len(raster_input) == 0)
    _lenb0 = (len(raster_output) == 0)
    if _lena0 + _lenb0 == 1:
        gscript.fatal("You must set both raster input and output, or neither.")
    """

    # Fatal if bc_cell set but mask and grid are false
    if bc_cell != "":
        if (mask == "") or (pp == ""):
            gscript.fatal(
                "Mask and pour point must be set to define b.c. cell")

    # Create grid -- overlaps DEM, three cells of padding
    g.region(raster=raster_input, ewres=dx, nsres=dy)
    gscript.use_temp_region()
    reg = gscript.region()
    reg_grid_edges_sn = np.linspace(reg["s"], reg["n"], reg["rows"])
    reg_grid_edges_we = np.linspace(reg["w"], reg["e"], reg["cols"])
    g.region(vector=basin, ewres=dx, nsres=dy)
    regnew = gscript.region()
    # Use a grid ratio -- don't match exactly the desired MODFLOW resolution
    grid_ratio_ns = np.round(regnew["nsres"] / reg["nsres"])
    grid_ratio_ew = np.round(regnew["ewres"] / reg["ewres"])
    # Get S, W, and then move the unit number of grid cells over to get N and E
    # and include 3 cells of padding around the whole watershed
    _s_dist = np.abs(reg_grid_edges_sn - (regnew["s"] - 3.0 * regnew["nsres"]))
    _s_idx = np.where(_s_dist == np.min(_s_dist))[0][0]
    _s = float(reg_grid_edges_sn[_s_idx])
    _n_grid = np.arange(_s, reg["n"] + 3 * grid_ratio_ns * reg["nsres"],
                        grid_ratio_ns * reg["nsres"])
    _n_dist = np.abs(_n_grid - (regnew["n"] + 3.0 * regnew["nsres"]))
    _n_idx = np.where(_n_dist == np.min(_n_dist))[0][0]
    _n = float(_n_grid[_n_idx])
    _w_dist = np.abs(reg_grid_edges_we - (regnew["w"] - 3.0 * regnew["ewres"]))
    _w_idx = np.where(_w_dist == np.min(_w_dist))[0][0]
    _w = float(reg_grid_edges_we[_w_idx])
    _e_grid = np.arange(_w, reg["e"] + 3 * grid_ratio_ew * reg["ewres"],
                        grid_ratio_ew * reg["ewres"])
    _e_dist = np.abs(_e_grid - (regnew["e"] + 3.0 * regnew["ewres"]))
    _e_idx = np.where(_e_dist == np.min(_e_dist))[0][0]
    _e = float(_e_grid[_e_idx])
    # Finally make the region
    g.region(
        w=str(_w),
        e=str(_e),
        s=str(_s),
        n=str(_n),
        nsres=str(grid_ratio_ns * reg["nsres"]),
        ewres=str(grid_ratio_ew * reg["ewres"]),
    )
    # And then make the grid
    v.mkgrid(map=grid, overwrite=gscript.overwrite())

    # Cell numbers (row, column, continuous ID)
    v.db_addcolumn(map=grid, columns="id int", quiet=True)
    colNames = np.array(gscript.vector_db_select(grid, layer=1)["columns"])
    colValues = np.array(
        gscript.vector_db_select(grid, layer=1)["values"].values())
    cats = colValues[:, colNames == "cat"].astype(int).squeeze()
    rows = colValues[:, colNames == "row"].astype(int).squeeze()
    cols = colValues[:, colNames == "col"].astype(int).squeeze()
    nrows = np.max(rows)
    ncols = np.max(cols)
    cats = np.ravel([cats])
    _id = np.ravel([ncols * (rows - 1) + cols])
    _id_cat = []
    for i in range(len(_id)):
        _id_cat.append((_id[i], cats[i]))
    gridTopo = VectorTopo(grid)
    gridTopo.open("rw")
    cur = gridTopo.table.conn.cursor()
    cur.executemany("update " + grid + " set id=? where cat=?", _id_cat)
    gridTopo.table.conn.commit()
    gridTopo.close()

    # Cell area
    v.db_addcolumn(map=grid, columns="area_m2 double precision", quiet=True)
    v.to_db(map=grid,
            option="area",
            units="meters",
            columns="area_m2",
            quiet=True)

    # Basin mask
    if len(mask) > 0:
        # Fine resolution region:
        g.region(
            n=reg["n"],
            s=reg["s"],
            w=reg["w"],
            e=reg["e"],
            nsres=reg["nsres"],
            ewres=reg["ewres"],
        )
        # Rasterize basin
        v.to_rast(
            input=basin,
            output=mask,
            use="val",
            value=1,
            overwrite=gscript.overwrite(),
            quiet=True,
        )
        # Coarse resolution region:
        g.region(
            w=str(_w),
            e=str(_e),
            s=str(_s),
            n=str(_n),
            nsres=str(grid_ratio_ns * reg["nsres"]),
            ewres=str(grid_ratio_ew * reg["ewres"]),
        )
        r.resamp_stats(input=mask,
                       output=mask,
                       method="sum",
                       overwrite=True,
                       quiet=True)
        r.mapcalc("tmp" + " = " + mask + " > 0", overwrite=True, quiet=True)
        g.rename(raster=("tmp", mask), overwrite=True, quiet=True)
        r.null(map=mask, null=0, quiet=True)
        # Add mask location (1 vs 0) in the MODFLOW grid
        v.db_addcolumn(map=grid,
                       columns="basinmask double precision",
                       quiet=True)
        v.what_rast(map=grid, type="centroid", raster=mask, column="basinmask")
    """
    # Resampled raster
    if len(raster_output) > 0:
        r.resamp_stats(input=raster_input, output=raster_output, method='average', overwrite=gscript.overwrite(), quiet=True)
    """

    # Pour point
    if len(pp) > 0:
        v.db_addcolumn(map=pp,
                       columns=("row integer", "col integer"),
                       quiet=True)
        v.build(map=pp, quiet=True)
        v.what_vect(map=pp,
                    query_map=grid,
                    column="row",
                    query_column="row",
                    quiet=True)
        v.what_vect(map=pp,
                    query_map=grid,
                    column="col",
                    query_column="col",
                    quiet=True)

    # Next point downstream of the pour point
    # Requires pp (always) and mask (sometimes)
    # Dependency set above w/ gscript.fatal
    # g.region(raster='DEM')
    # dx = gscript.region()['ewres']
    # dy = gscript.region()['nsres']
    if len(bc_cell) > 0:
        ########## NEED TO USE TRUE TEMPORARY FILE ##########
        # May not work with dx != dy!
        v.to_rast(input=pp, output="tmp", use="val", value=1, overwrite=True)
        r.buffer(input="tmp",
                 output="tmp",
                 distances=float(dx) * 1.5,
                 overwrite=True)
        r.mapcalc("tmp2 = if(tmp==2,1,null()) * " + raster_input,
                  overwrite=True)
        # r.mapcalc('tmp = if(isnull('+raster_input+',0,(tmp == 2)))', overwrite=True)
        # g.region(rast='tmp')
        # r.null(map=raster_input,
        # g.region(raster=raster_input)
        # r.resample(input=raster_input, output='tmp3', overwrite=True)
        r.resamp_stats(input=raster_input,
                       output="tmp3",
                       method="minimum",
                       overwrite=True)
        r.drain(input="tmp3", start_points=pp, output="tmp", overwrite=True)
        # g.region(w=str(_w), e=str(_e), s=str(_s), n=str(_n), nsres=str(grid_ratio_ns*reg['nsres']), ewres=str(grid_ratio_ew*reg['ewres']))
        # r.resamp_stats(input='tmp2', output='tmp3', overwrite=True)
        # g.rename(raster=('tmp3','tmp2'), overwrite=True, quiet=True)
        r.mapcalc("tmp3 = tmp2 * tmp", overwrite=True, quiet=True)
        g.rename(raster=("tmp3", "tmp"), overwrite=True, quiet=True)
        # r.null(map='tmp', setnull=0) # Not necessary: center point removed above
        r.to_vect(
            input="tmp",
            output=bc_cell,
            type="point",
            column="z",
            overwrite=gscript.overwrite(),
            quiet=True,
        )
        v.db_addcolumn(
            map=bc_cell,
            columns=(
                "row integer",
                "col integer",
                "x double precision",
                "y double precision",
            ),
            quiet=True,
        )
        v.build(map=bc_cell, quiet=True)
        v.what_vect(map=bc_cell,
                    query_map=grid,
                    column="row",
                    query_column="row",
                    quiet=True)
        v.what_vect(map=bc_cell,
                    query_map=grid,
                    column="col",
                    query_column="col",
                    quiet=True)
        v.to_db(map=bc_cell, option="coor", columns=("x,y"))

        # Of the candidates, the pour point is the closest one
        # v.db_addcolumn(map=bc_cell, columns=('dist_to_pp double precision'), quiet=True)
        # v.distance(from_=bc_cell, to=pp, upload='dist', column='dist_to_pp')

        # Find out if this is diagonal: finite difference works only N-S, W-E
        colNames = np.array(gscript.vector_db_select(pp, layer=1)["columns"])
        colValues = np.array(
            gscript.vector_db_select(pp, layer=1)["values"].values())
        pp_row = colValues[:, colNames == "row"].astype(int).squeeze()
        pp_col = colValues[:, colNames == "col"].astype(int).squeeze()
        colNames = np.array(
            gscript.vector_db_select(bc_cell, layer=1)["columns"])
        colValues = np.array(
            gscript.vector_db_select(bc_cell, layer=1)["values"].values())
        bc_row = colValues[:, colNames == "row"].astype(int).squeeze()
        bc_col = colValues[:, colNames == "col"].astype(int).squeeze()
        # Also get x and y while we are at it: may be needed later
        bc_x = colValues[:, colNames == "x"].astype(float).squeeze()
        bc_y = colValues[:, colNames == "y"].astype(float).squeeze()
        if (bc_row != pp_row).all() and (bc_col != pp_col).all():
            if bc_row.ndim > 0:
                if len(bc_row) > 1:
                    for i in range(len(bc_row)):
                        """
                        UNTESTED!!!!
                        And probably unimportant -- having 2 cells with river
                        going through them is most likely going to happen with
                        two adjacent cells -- so a side and a corner
                        """
                        _col1, _row1 = str(bc_col[i]), str(pp_row[i])
                        _col2, _row2 = str(pp_col[i]), str(bc_row[i])
                        # Check if either of these is covered by the basin mask
                        _ismask_1 = gscript.vector_db_select(
                            grid,
                            layer=1,
                            where="(row == " + _row1 + ") AND (col ==" +
                            _col1 + ")",
                            columns="basinmask",
                        )
                        _ismask_1 = int(_ismask_1["values"].values()[0][0])
                        _ismask_2 = gscript.vector_db_select(
                            grid,
                            layer=1,
                            where="(row == " + _row2 + ") AND (col ==" +
                            _col2 + ")",
                            columns="basinmask",
                        )
                        _ismask_2 = int(_ismask_2["values"].values()[0][0])
                        # check if either of these is the other point
                        """
                        NOT DOING THIS YET -- HAVEN'T THOUGHT THROUGH IF
                        ACTUALLY NECESSARY. (And this is an edge case anyway)
                        """
                        # If both covered by mask, error
                        if _ismask_1 and _ismask_2:
                            gscript.fatal(
                                "All possible b.c. cells covered by basin mask.\n\
                                         Contact the developer: awickert (at) umn(.)edu"
                            )

            # If not diagonal, two possible locations that are adjacent
            # to the pour point
            _col1, _row1 = str(bc_col), str(pp_row)
            _col2, _row2 = str(pp_col), str(bc_row)
            # Check if either of these is covered by the basin mask
            _ismask_1 = gscript.vector_db_select(
                grid,
                layer=1,
                where="(row == " + _row1 + ") AND (col ==" + _col1 + ")",
                columns="basinmask",
            )
            _ismask_1 = int(_ismask_1["values"].values()[0][0])
            _ismask_2 = gscript.vector_db_select(
                grid,
                layer=1,
                where="(row == " + _row2 + ") AND (col ==" + _col2 + ")",
                columns="basinmask",
            )
            _ismask_2 = int(_ismask_2["values"].values()[0][0])
            # If both covered by mask, error
            if _ismask_1 and _ismask_2:
                gscript.fatal(
                    "All possible b.c. cells covered by basin mask.\n\
                             Contact the developer: awickert (at) umn(.)edu")
            # Otherwise, those that keep those that are not covered by basin
            # mask and set ...
            # ... wait, do we want the point that touches as few interior
            # cells as possible?
            # maybe just try setting both and seeing what happens for now!
            else:
                # Get dx and dy
                # dx = gscript.region()['ewres']
                # dy = gscript.region()['nsres']
                # Build tool to handle multiple b.c. cells?
                bcvect = vector.Vector(bc_cell)
                bcvect.open("rw")
                _cat_i = 2
                if _ismask_1 != 0:
                    # _x should always be bc_x, but writing generalized code
                    _x = bc_x + float(dx) * (int(_col1) - bc_col
                                             )  # col 1 at w edge
                    _y = bc_y - float(dy) * (int(_row1) - bc_row
                                             )  # row 1 at n edge
                    point0 = Point(_x, _y)
                    bcvect.write(
                        point0,
                        cat=_cat_i,
                        attrs=(None, _row1, _col1, _x, _y),
                    )
                    bcvect.table.conn.commit()
                    _cat_i += 1
                if _ismask_2 != 0:
                    # _y should always be bc_y, but writing generalized code
                    _x = bc_x + float(dx) * (int(_col2) - bc_col
                                             )  # col 1 at w edge
                    _y = bc_y - float(dy) * (int(_row2) - bc_row
                                             )  # row 1 at n edge
                    point0 = Point(_x, _y)
                    bcvect.write(
                        point0,
                        cat=_cat_i,
                        attrs=(None, _row2, _col2, _x, _y),
                    )
                    bcvect.table.conn.commit()
                # Build database table and vector geometry
                bcvect.build()
                bcvect.close()

    g.region(
        n=reg["n"],
        s=reg["s"],
        w=reg["w"],
        e=reg["e"],
        nsres=reg["nsres"],
        ewres=reg["ewres"],
    )
예제 #10
0
def export_map(input_name, title, categories, colors, output_name, timestamp):
    """
    Export a raster map by renaming the (temporary) raster map name
    'input_name' to the requested output raster map name 'output_name'.
    This function is (mainly) used to export either of the intermediate
    recreation 'potential' or 'opportunity' maps.

    Parameters
    ----------
    raster :
        Input raster map name

    title :
        Title for the output raster map

    categories :
        Categories and labels for the output raster map

    colors :
        Colors for the output raster map

    output_name :
        Output raster map name

    Returns
    -------
    output_name :
        This function will return the requested 'output_name'

    Examples
    --------
    ..
    """
    finding = grass.find_file(name=input_name, element="cell")
    if not finding["file"]:
        grass.fatal("Raster map {name} not found".format(
            name=input_name))  # Maybe use 'finding'?

    # inform
    msg = "* Outputting '{raster}' map\n"
    msg = msg.format(raster=output_name)
    grass.verbose(_(msg))

    # get categories and labels
    temporary_raster_categories_map = temporary_filename("categories_of_" +
                                                         input_name)
    raster_category_labels = string_to_file(
        string=categories, filename=temporary_raster_categories_map)

    # add ascii file to removal list
    remove_files_at_exit(raster_category_labels)

    # apply categories and description
    r.category(map=input_name, rules=raster_category_labels, separator=":")

    # update meta and colors
    update_meta(input_name, title, timestamp)
    r.colors(map=input_name, rules="-", stdin=colors, quiet=True)

    # rename to requested output name
    g.rename(raster=(input_name, output_name), quiet=True)

    return output_name