예제 #1
0
def compute_supply(
    base,
    recreation_spectrum,
    highest_spectrum,
    base_reclassification_rules,
    reclassified_base,
    reclassified_base_title,
    flow,
    flow_map_name,
    aggregation,
    ns_resolution,
    ew_resolution,
    print_only=False,
    flow_column_name=None,
    vector=None,
    supply_filename=None,
    use_filename=None,
):
    """
     Algorithmic description of the "Contribution of Ecosysten Types"

     # FIXME
     '''
     1   B ← {0, .., m-1}     :  Set of aggregational boundaries
     2   T ← {0, .., n-1}     :  Set of land cover types
     3   WE ← 0               :  Set of weighted extents
     4   R ← 0                :  Set of fractions
     5   F ← 0
     6   MASK ← HQR           : High Quality Recreation
     7   foreach {b} ⊆ B do   : for each aggregational boundary 'b'
     8      RB ← 0
     9      foreach {t} ⊆ T do  : for each Land Type
     10         WEt ← Et * Wt   : Weighted Extent = Extent(t) * Weight(t)
     11         WE ← WE⋃{WEt}   : Add to set of Weighted Extents
     12     S ← ∑t∈WEt
     13     foreach t ← T do
     14        Rt ← WEt / ∑WE
     15        R ← R⋃{Rt}
     16     RB ← RB⋃{R}
     '''
     # FIXME

    Parameters
    ----------
    recreation_spectrum:
        Map scoring access to and quality of recreation

    highest_spectrum :
        Expected is a map of areas with highest recreational value (category 9
        as per the report ... )

    base :
        Base land types map for final zonal statistics. Specifically to
        ESTIMAP's recrceation mapping algorithm

    base_reclassification_rules :
        Reclassification rules for the input base map

    reclassified_base :
        Name for the reclassified base cover map

    reclassified_base_title :
        Title for the reclassified base map

    ecosystem_types :

    flow :
        Map of visits, derived from the mobility function, depicting the
        number of people living inside zones 0, 1, 2, 3. Used as a cover map
        for zonal statistics.

    flow_map_name :
        A name for the 'flow' map. This is required when the 'flow' input
        option is not defined by the user, yet some of the requested outputs
        required first the production of the 'flow' map. An example is the
        request for a supply table without requesting the 'flow' map itself.

    aggregation :

    ns_resolution :

    ew_resolution :

    statistics_filename :

    supply_filename :
        Name for CSV output file of the supply table

    use_filename :
        Name for CSV output file of the use table

    flow_column_name :
        Name for column to populate with 'flow' values

    vector :
        If 'vector' is given, a vector map of the 'flow' along with appropriate
        attributes will be produced.

    ? :
        Land cover class percentages in ROS9 (this is: relative percentage)

    output :
        Supply table (distribution of flow for each land cover class)

    Returns
    -------
    This function produces a map to base the production of a supply table in
    form of CSV.

    Examples
    --------
    """
    # Inputs
    flow_in_base = flow + "_" + base
    base_scores = base + ".scores"

    # Define lists and dictionaries to hold intermediate data
    statistics_dictionary = {}
    weighted_extents = {}
    flows = []

    # MASK areas of high quality recreation
    r.mask(raster=highest_spectrum, overwrite=True, quiet=True)

    # Reclassify land cover map to MAES ecosystem types
    r.reclass(
        input=base,
        rules=base_reclassification_rules,
        output=reclassified_base,
        quiet=True,
    )
    # add to "remove_at_exit" after the reclassified maps!

    # Discard areas out of MASK
    copy_equation = EQUATION.format(result=reclassified_base,
                                    expression=reclassified_base)
    r.mapcalc(copy_equation, overwrite=True)

    # Count flow within each land cover category
    r.stats_zonal(
        base=base,
        flags="r",
        cover=flow_map_name,
        method="sum",
        output=flow_in_base,
        overwrite=True,
        quiet=True,
    )

    # Set colors for "flow" map
    r.colors(map=flow_in_base, color=MOBILITY_COLORS, quiet=True)

    # Parse aggregation raster categories and labels
    categories = grass.parse_command("r.category",
                                     map=aggregation,
                                     delimiter="\t")

    for category in categories:

        # Intermediate names

        cells = highest_spectrum + ".cells" + "." + category
        remove_map_at_exit(cells)

        extent = highest_spectrum + ".extent" + "." + category
        remove_map_at_exit(extent)

        weighted = highest_spectrum + ".weighted" + "." + category
        remove_map_at_exit(weighted)

        fractions = base + ".fractions" + "." + category
        remove_map_at_exit(fractions)

        flow_category = "_flow_" + category
        flow = base + flow_category
        remove_map_at_exit(flow)

        flow_in_reclassified_base = reclassified_base + "_flow"
        flow_in_category = reclassified_base + flow_category
        flows.append(flow_in_category)  # add to list for patching
        remove_map_at_exit(flow_in_category)

        # Output names

        msg = "Processing aggregation raster category: {r}"
        msg = msg.format(r=category)
        grass.debug(_(msg))
        # g.message(_(msg))

        # First, set region to extent of the aggregation map
        # and resolution to the one of the population map
        # Note the `-a` flag to g.region: ?
        # To safely modify the region: grass.use_temp_region()  # FIXME
        g.region(
            raster=aggregation,
            nsres=ns_resolution,
            ewres=ew_resolution,
            flags="a",
            quiet=True,
        )

        msg = "|! Computational resolution matched to {raster}"
        msg = msg.format(raster=aggregation)
        grass.debug(_(msg))

        # Build MASK for current category & high quality recreation areas
        msg = "Setting category '{c}' of '{a}' as a MASK"
        grass.verbose(_(msg.format(c=category, a=aggregation)))

        masking = "if( {spectrum} == {highest_quality_category} && "
        masking += "{aggregation} == {category}, "
        masking += "1, null() )"
        masking = masking.format(
            spectrum=recreation_spectrum,
            highest_quality_category=HIGHEST_RECREATION_CATEGORY,
            aggregation=aggregation,
            category=category,
        )
        masking_equation = EQUATION.format(result="MASK", expression=masking)
        grass.mapcalc(masking_equation, overwrite=True)

        # zoom to MASK
        g.region(zoom="MASK",
                 nsres=ns_resolution,
                 ewres=ew_resolution,
                 quiet=True)

        # Count number of cells within each land category
        r.stats_zonal(
            flags="r",
            base=base,
            cover=highest_spectrum,
            method="count",
            output=cells,
            overwrite=True,
            quiet=True,
        )
        cells_categories = grass.parse_command("r.category",
                                               map=cells,
                                               delimiter="\t")
        grass.debug(_("Cells: {c}".format(c=cells_categories)))

        # Build cell category and label rules for `r.category`
        cells_rules = "\n".join([
            "{0}:{1}".format(key, value)
            for key, value in cells_categories.items()
        ])

        # Discard areas out of MASK
        copy_equation = EQUATION.format(result=cells, expression=cells)
        r.mapcalc(copy_equation, overwrite=True)

        # Reassign cell category labels
        r.category(map=cells, rules="-", stdin=cells_rules, separator=":")

        # Compute extent of each land category
        extent_expression = "@{cells} * area()"
        extent_expression = extent_expression.format(cells=cells)
        extent_equation = EQUATION.format(result=extent,
                                          expression=extent_expression)
        r.mapcalc(extent_equation, overwrite=True)

        # Write extent figures as labels
        r.stats_zonal(
            flags="r",
            base=base,
            cover=extent,
            method="average",
            output=extent,
            overwrite=True,
            verbose=False,
            quiet=True,
        )

        # Write land suitability scores as an ASCII file
        temporary_reclassified_base_map = temporary_filename(
            filename=reclassified_base)
        suitability_scores_as_labels = string_to_file(
            SUITABILITY_SCORES_LABELS,
            filename=temporary_reclassified_base_map)
        remove_files_at_exit(suitability_scores_as_labels)

        # Write scores as raster category labels
        r.reclass(
            input=base,
            output=base_scores,
            rules=suitability_scores_as_labels,
            overwrite=True,
            quiet=True,
            verbose=False,
        )
        remove_map_at_exit(base_scores)

        # Compute weighted extents
        weighted_expression = "@{extent} * float(@{scores})"
        weighted_expression = weighted_expression.format(extent=extent,
                                                         scores=base_scores)
        weighted_equation = EQUATION.format(result=weighted,
                                            expression=weighted_expression)
        r.mapcalc(weighted_equation, overwrite=True)

        # Write weighted extent figures as labels
        r.stats_zonal(
            flags="r",
            base=base,
            cover=weighted,
            method="average",
            output=weighted,
            overwrite=True,
            verbose=False,
            quiet=True,
        )

        # Get weighted extents in a dictionary
        weighted_extents = grass.parse_command("r.category",
                                               map=weighted,
                                               delimiter="\t")

        # Compute the sum of all weighted extents and add to dictionary
        category_sum = sum([
            float(x) if not math.isnan(float(x)) else 0
            for x in weighted_extents.values()
        ])
        weighted_extents["sum"] = category_sum

        # Create a map to hold fractions of each weighted extent to the sum
        # See also:
        # https://grasswiki.osgeo.org/wiki/LANDSAT#Hint:_Minimal_disk_space_copies
        r.reclass(
            input=base,
            output=fractions,
            rules="-",
            stdin="*=*",
            verbose=False,
            quiet=True,
        )

        # Compute weighted fractions of land types
        fraction_category_label = {
            key: float(value) / weighted_extents["sum"]
            for (key, value) in weighted_extents.iteritems()
            if key is not "sum"
        }

        # Build fraction category and label rules for `r.category`
        fraction_rules = "\n".join([
            "{0}:{1}".format(key, value)
            for key, value in fraction_category_label.items()
        ])

        # Set rules
        r.category(map=fractions,
                   rules="-",
                   stdin=fraction_rules,
                   separator=":")

        # Assert that sum of fractions is ~1
        fraction_categories = grass.parse_command("r.category",
                                                  map=fractions,
                                                  delimiter="\t")

        fractions_sum = sum([
            float(x) if not math.isnan(float(x)) else 0
            for x in fraction_categories.values()
        ])
        msg = "Fractions: {f}".format(f=fraction_categories)
        grass.debug(_(msg))

        # g.message(_("Sum: {:.17g}".format(fractions_sum)))
        assert abs(fractions_sum - 1) < 1.0e-6, "Sum of fractions is != 1"

        # Compute flow
        flow_expression = "@{fractions} * @{flow}"
        flow_expression = flow_expression.format(fractions=fractions,
                                                 flow=flow_in_base)
        flow_equation = EQUATION.format(result=flow,
                                        expression=flow_expression)
        r.mapcalc(flow_equation, overwrite=True)

        # Write flow figures as raster category labels
        r.stats_zonal(
            base=reclassified_base,
            flags="r",
            cover=flow,
            method="sum",
            output=flow_in_category,
            overwrite=True,
            verbose=False,
            quiet=True,
        )

        # Parse flow categories and labels
        flow_categories = grass.parse_command("r.category",
                                              map=flow_in_category,
                                              delimiter="\t")
        grass.debug(_("Flow: {c}".format(c=flow_categories)))

        # Build flow category and label rules for `r.category`
        flow_rules = "\n".join([
            "{0}:{1}".format(key, value)
            for key, value in flow_categories.items()
        ])

        # Discard areas out of MASK

        # Check here again!
        # Output patch of all flow maps?

        copy_equation = EQUATION.format(result=flow_in_category,
                                        expression=flow_in_category)
        r.mapcalc(copy_equation, overwrite=True)

        # Reassign cell category labels
        r.category(map=flow_in_category,
                   rules="-",
                   stdin=flow_rules,
                   separator=":")

        # Update title
        reclassified_base_title += " " + category
        r.support(flow_in_category, title=reclassified_base_title)

        # debugging
        # r.report(
        #     flags='hn',
        #     map=(flow_in_category),
        #     units=('k','c','p'),
        # )

        if print_only:
            r.stats(
                input=(flow_in_category),
                output="-",
                flags="nacpl",
                separator=COMMA,
                quiet=True,
            )

        if not print_only:

            if flow_column_name:
                flow_column_prefix = flow_column_name + category
            else:
                flow_column_name = "flow"
                flow_column_prefix = flow_column_name + category

            # Produce vector map(s)
            if vector:

                # The following is wrong

                # update_vector(vector=vector,
                #         raster=flow_in_category,
                #         methods=METHODS,
                #         column_prefix=flow_column_prefix)

                # What can be done?

                # Maybe update columns of an existing map from the columns of
                # the following vectorised raster map(s)
                # ?

                raster_to_vector(raster=flow_in_category,
                                 vector=flow_in_category,
                                 type="area")

            # get statistics
            dictionary = get_raster_statistics(
                map_one=aggregation,  # reclassified_base
                map_two=flow_in_category,
                separator="|",
                flags="nlcap",
            )

            # merge 'dictionary' with global 'statistics_dictionary'
            statistics_dictionary = merge_two_dictionaries(
                statistics_dictionary, dictionary)

        # It is important to remove the MASK!
        r.mask(flags="r", quiet=True)

    # FIXME

    # Add "reclassified_base" map to "remove_at_exit" here, so as to be after
    # all reclassified maps that derive from it

    # remove the map 'reclassified_base'
    # g.remove(flags='f', type='raster', name=reclassified_base, quiet=True)
    # remove_map_at_exit(reclassified_base)

    if not print_only:
        r.patch(flags="",
                input=flows,
                output=flow_in_reclassified_base,
                quiet=True)

        if vector:
            # Patch all flow vector maps in one
            v.patch(
                flags="e",
                input=flows,
                output=flow_in_reclassified_base,
                overwrite=True,
                quiet=True,
            )

        # export to csv
        if supply_filename:
            supply_filename += CSV_EXTENSION
            nested_dictionary_to_csv(supply_filename, statistics_dictionary)

        if use_filename:
            use_filename += CSV_EXTENSION
            uses = compile_use_table(statistics_dictionary)
            dictionary_to_csv(use_filename, uses)

    # Maybe return list of flow maps?  Requires unique flow map names
    return flows
예제 #2
0
    def extract_pixels(self, rast_name, use_cats=False, as_df=False):
        """Extract pixel values from a RasterStack using another RasterRow
        object of labelled pixels

        Parameters
        ----------
        rast_name : str
            Name of GRASS GIS raster map containing labelled pixels.

        use_cats : bool (default is False)
            Whether to return pixel values as category labels instead of
            numeric values if the rast_name map has categories assigned to
            it. Note that if some categories are missing in the rast_name
            map then this option is ignored.

        as_df : bool (opt). Default is False
            Whether to return the extracted RasterStack pixels as a Pandas
            DataFrame.
        """
        # some checks
        if RasterRow(rast_name).exist() is False:
            gs.fatal("The supplied raster does not exist")

        # check for categories in labelled pixel map
        with RasterRow(rast_name) as src:
            labels = src.cats

        if "" in labels.labels() or use_cats is False:
            labels = None

        # extract predictor values at pixel locations
        data = r.stats(
            input=[rast_name] + self.names,
            separator="pipe",
            flags=["n", "g"],
            stdout_=PIPE,
        ).outputs.stdout

        if data == "":
            gs.fatal("The training pixel locations do not spatially "
                     "intersect any raster datasets")

        data = data.strip().split(os.linesep)
        data = [i.split("|") for i in data]
        data = np.asarray(data).astype("float32")

        # remove x,y columns from array indexes 1 and 2
        data = data[:, 2:]

        y = data[:, 0]
        X = data[:, 1:]

        if (y % 1).all() == 0:
            y = y.astype("int")

        cat = np.arange(0, y.shape[0])

        if labels and use_cats is True:
            enc = CategoryEncoder()
            enc.fit(labels)
            y = enc.transform(y)

        if as_df is True:
            df = pd.DataFrame(
                data=np.column_stack((cat, y, X)),
                columns=["cat"] + [rast_name] + self.names,
            )

            return df

        return X, y, cat