예제 #1
0
def export_results(vect_name,
                   results,
                   cats,
                   rlayer,
                   training=None,
                   cols=None,
                   overwrite=False,
                   append=False,
                   pkl=None):
    if pkl:
        res = open(pkl, 'w')
        pickle.dump(results, res)
        res.close()

    # check if the link already exist
    with Vector(vect_name, mode='r') as vct:
        link = vct.dblinks.by_name(rlayer)
        mode = 'r' if link else 'w'

    print("Opening vector <%s>" % vect_name)
    with Vector(vect_name, mode=mode) as vect:
        if cols:
            cols.insert(0, COLS[0])
            tab = link.table() if link else Table(rlayer, vect.table.conn)
            if tab.exist() and append:
                columns_to_up = []
                # add the column to the table
                for cname, ctype in cols:
                    columns_to_up.append("%s=?" % cname)
                    if cname not in tab.columns:
                        tab.columns.add(cname, ctype)
                upsql = "UPDATE %s SET %s WHERE %s=%s"
                up = upsql % (tab.name, ','.join(columns_to_up), tab.key, '?')
            else:
                if tab.exist():
                    print("Table <%s> already exist, will be removed." %
                          tab.name)
                    tab.drop(force=True)
                print("Ceating a new table <%s>." % rlayer)
                tab.create(cols)
                up = ''

            export2onesqlite(tab, cats.astype(int), up,
                             *[cls['predict'].astype(int) for cls in results])
            if mode == 'w':
                nlyr = len(vect.dblinks) + 1
                link = Link(nlyr, tab.name, tab.name)
                vect.dblinks.add(link)
                vect.build()
        else:
            for cls in results:
                create_tab(vect, cls['name'], cats, cls['predict'], training,
                           COLS if training else COLS[:2])
예제 #2
0
def main():
    mapset = Mapset()
    mapset.current()

    with open(options['output'], 'w') as fd:
        for rast in mapset.glist('raster', pattern='*_B04_10m'):
            items = rast.split('_')
            d = datetime.strptime(items[2], '%Y%m%dT%H%M%S')
            ## workaround
            dd = d + timedelta(seconds=1)

            vect = '{}_{}_MSK_CLOUDS'.format(items[1], items[2])
            mask_vect = '{}_{}'.format(vect, options['map'].split('@')[0])
            if Vector(vect).exist():
                Module('v.overlay',
                       ainput=options['map'],
                       binput=vect,
                       operator='not',
                       output=mask_vect)
            else:
                copy(options['map'], mask_vect, 'vector')
            Module('r.mask', vector=mask_vect, overwrite=True)
            Module('g.remove', flags='f', type='vector', name=mask_vect)
            Module('g.rename', raster=['MASK', mask_vect])
            fd.write("{0}|{1}|{2}{3}".format(mask_vect,
                                             d.strftime('%Y-%m-%d %H:%M:%S'),
                                             dd.strftime('%Y-%m-%d %H:%M:%S'),
                                             os.linesep))

    return 0
예제 #3
0
def extract_training(vect, tvect, tlayer):
    """Assign a class to all the areas that contained, are contained
    or intersect a training vector"""
    msgr = get_msgr()
    tname, tmset = tvect.split('@') if '@' in tvect else (tvect, '')
    vname, vmset = vect.split('@') if '@' in vect else (vect, '')

    with VectorTopo(tname, tmset, mode='r') as trn:
        with VectorTopo(vname, vmset, mode='r') as vct:
            layer_num, layer_name = get_layer_num_name(vct, tlayer)
            # instantiate the area objects
            trn_area = Area(c_mapinfo=trn.c_mapinfo)
            seg_area = Area(c_mapinfo=vct.c_mapinfo)
            n_areas = trn.number_of('areas')
            # check/remove/create a new table
            table, create_link = make_new_table(vct, layer_name, force=True)
            find_lines(table, [l for l in trn.viter('lines')], vct)
            # find and save all the segments
            find_area(table, trn.viter('areas', idonly=True), trn_area,
                      seg_area, n_areas, vct)
            check_balance(table, trn.table)

    if create_link:
        msgr.message(_("Connect the new table to the vector map..."))
        with Vector(vect, mode='rw') as seg:
            link = Link(layer_num, name=layer_name, table=table.name)
            seg.dblinks.add(link)
            seg.build()
예제 #4
0
def main(opt, flg):
    #
    # Set check variables
    #
    overwrite = True
    rasters = opt['rasters'].split(',') if opt['rasters'] else []
    rprefix = opt['rprefix'].split(',') if opt['rprefix'] else []

    def split(x): return x.split('@') if '@' in x else (x, '')

    vname, vmset = split(opt['vector'])
    shpcsv = opt['shpcsv'] if opt['shpcsv'] else vname + '.csv'
    rstcsv = (opt['rstcsv'].split(',') if opt['rstcsv']
              else [split(rst)[0] + '.csv' for rst in rasters])
    zones = opt['zones'] if opt['zones'] else vname + '_zones'
    nprocs = int(opt.get('nprocs', 1))
    if rasters:
        if rprefix and len(rasters) != len(rprefix):
            raise
        if len(rasters) != len(rstcsv):
            raise
        prefixes = rprefix if rprefix else rasters

    skipshp = opt['skipshape'].split(',') if opt['skipshape'] else []
    skiprst = opt['skipunivar'].split(',') if opt['skipunivar'] else []
    layer = int(opt['layer'])
    newlayer = int(opt['newlayer'])
    newlayername = (opt['newlayername'] if opt['newlayername']
                    else vname + '_stats')
    newtabname = opt['newtabname'] if opt['newtabname'] else vname + '_stats'
    rstpercentile = float(opt['rstpercentile'])
    separator = opt.get('separator', ';')

    #
    # compute
    #
    if not os.path.exists(shpcsv):
        get_shp_csv(opt['vector'], shpcsv, overwrite, separator)
    if not get_mapset_raster(zones):
        get_zones(opt['vector'], zones, layer)
    if not rstcsv or not os.path.exists(rstcsv[0]):
        get_rst_csv(rasters, zones, rstcsv, rstpercentile, overwrite,
                    nprocs, separator)

    newlink = Link(newlayer, newlayername, newtabname)
    newtab = newlink.table()
    with Vector(vname, vmset, mode='r', layer=layer) as vct:
        mode = 'r' if newlink in vct.dblinks else 'rw'

    with VectorTopo(vname, vmset, mode=mode, layer=layer) as vct:
        update_cols(newtab, shpcsv, rstcsv, prefixes, skipshp, skiprst, separator=separator)

        if mode == 'rw':
            # add the new link
            vct.dblinks.add(newlink)
            vct.build()
예제 #5
0
    def _get_streamlist(self, stream):
        """Compute shape of stream.

        :param stream:
        """
        Module(
            'db.copy',
            from_table=self.tab_stream_shape,
            from_database='$GISDBASE/$LOCATION_NAME/PERMANENT/sqlite/sqlite.db',
            to_table='stream_shape')

        # TODO: (check if smoderp column exists)
        sfields = ["number", "shapetype", "b", "m", "roughness", "q365"]
        try:
            self._join_table(stream, self.tab_stream_shape_code,
                             'stream_shape', self.tab_stream_shape_code,
                             sfields)
        except:
            self._add_field(stream, "smoderp", "TEXT", "0")
            self._join_table(stream, self.tab_stream_shape_code,
                             'stream_shape', self.tab_stream_shape_code,
                             sfields)

        sfields.insert(1, "smoderp")
        # TODO: rewrite into pygrass syntax
        ret = Module('v.db.select',
                     flags='c',
                     map=stream,
                     columns=sfields,
                     stdout_=PIPE)
        for row in ret.outputs.stdout.splitlines():
            for value in row.split('|'):
                if value == '':
                    raise StreamPreparationError(
                        "Empty value in {} found.".format(stream))

        with Vector(stream) as data:
            self.field_names = data.table.columns.names()
        self.stream_tmp = [[] for field in self.field_names]

        # TODO: rewrite into pygrass syntax
        ret = Module('v.db.select',
                     flags='c',
                     map=stream,
                     columns=self.field_names,
                     stdout_=PIPE)
        for row in ret.outputs.stdout.splitlines():
            i = 0
            for val in row.split('|'):
                self.stream_tmp[i].append(float(val))
                i += 1

        self.streamlist = []
        self._streamlist()
    def _add_field(self, vector, newfield, datatype, default_value):
        """
        Adds field into attribute field of feature class.

        :param vector: Feature class to which new field is to be added.
        :param newfield:
        :param datatype:
        :param default_value:
        """
        with Vector(vector) as data:
            found = newfield in data.table.columns.names()
        if found:
            Module('v.db.dropcolumn', map=vector, columns=newfield)

        Module('v.db.addcolumn',
               map=vector,
               columns='{} {}'.format(newfield, datatype))

        Module('v.db.update', map=vector, column=newfield, value=default_value)
예제 #7
0
def extract_classes(vect, layer):
    vect, mset = vect.split("@") if "@" in vect else (vect, "")
    with Vector(vect, mapset=mset, layer=layer, mode="r") as vct:
        vct.table.filters.select("cat", "class")
        return {key: val for key, val in vct.table.execute()}
예제 #8
0
def main():
    # Get the options
    input = options["input"]
    output = options["output"]
    strds = options["strds"]
    tempwhere = options["t_where"]
    where = options["where"]
    methods = options["method"]
    percentile = options["percentile"]

    overwrite = grass.overwrite()

    quiet = True

    if grass.verbosity() > 2:
        quiet = False

    if where == "" or where == " " or where == "\n":
        where = None

    # Check the number of sample strds and the number of columns
    strds_names = strds.split(",")

    # Make sure the temporal database exists
    tgis.init()
    # We need a database interface
    dbif = tgis.SQLDatabaseInterfaceConnection()
    dbif.connect()

    samples = []

    first_strds = tgis.open_old_stds(strds_names[0], "strds", dbif)
    # Single space time raster dataset
    if len(strds_names) == 1:
        granu = first_strds.get_granularity()
        rows = first_strds.get_registered_maps(
            "name,mapset,start_time,end_time", tempwhere, "start_time", dbif)
        if not rows:
            dbif.close()
            grass.fatal(
                _("Space time raster dataset <%s> is empty") %
                first_strds.get_id())

        for row in rows:
            start = row["start_time"]
            end = row["end_time"]
            raster_maps = [
                row["name"] + "@" + row["mapset"],
            ]

            s = Sample(start, end, raster_maps, first_strds.get_name(), granu)
            samples.append(s)
    else:
        # Multiple space time raster datasets
        for name in strds_names[1:]:
            dataset = tgis.open_old_stds(name, "strds", dbif)
            if dataset.get_temporal_type() != first_strds.get_temporal_type():
                grass.fatal(
                    _(
                        "Temporal type of space time raster "
                        "datasets must be equal\n<%(a)s> of type "
                        "%(type_a)s do not match <%(b)s> of type "
                        "%(type_b)s" % {
                            "a": first_strds.get_id(),
                            "type_a": first_strds.get_temporal_type(),
                            "b": dataset.get_id(),
                            "type_b": dataset.get_temporal_type()
                        }))

        mapmatrizes = tgis.sample_stds_by_stds_topology(
            "strds", "strds", strds_names, strds_names[0], False, None,
            "equal", False, False)
        #TODO check granularity for multiple STRDS
        for i in range(len(mapmatrizes[0])):
            isvalid = True
            mapname_list = []
            for mapmatrix in mapmatrizes:

                entry = mapmatrix[i]

                if entry["samples"]:
                    sample = entry["samples"][0]
                    name = sample.get_id()
                    if name is None:
                        isvalid = False
                        break
                    else:
                        mapname_list.append(name)

            if isvalid:
                entry = mapmatrizes[0][i]
                map = entry["granule"]

                start, end = map.get_temporal_extent_as_tuple()
                s = Sample(start, end, mapname_list, name)
                samples.append(s)
    # Get the layer and database connections of the input vector
    if where:
        try:
            grass.run_command("v.extract",
                              input=input,
                              where=where,
                              output=output)
        except CalledModuleError:
            dbif.close()
            grass.fatal(
                _("Unable to run v.extract for vector map"
                  " <%s> and where <%s>") % (input, where))
    else:
        gcopy(input, output, 'vector')

    msgr = Messenger()
    perc_curr = 0
    perc_tot = len(samples)
    pymap = Vector(output)
    try:
        pymap.open('r')
    except:
        dbif.close()
        grass.fatal(_("Unable to create vector map <%s>" % output))
    pymap.close()

    for sample in samples:
        raster_names = sample.raster_names
        # Call v.what.rast for each raster map
        for name in raster_names:
            day = sample.printDay()
            column_name = "%s_%s" % (sample.strds_name, day)
            try:
                grass.run_command("v.rast.stats",
                                  map=output,
                                  raster=name,
                                  column=column_name,
                                  method=methods,
                                  percentile=percentile,
                                  quiet=quiet,
                                  overwrite=overwrite)
            except CalledModuleError:
                dbif.close()
                grass.fatal(
                    _("Unable to run v.what.rast for vector map"
                      " <%s> and raster map <%s>") % (output, name))

        msgr.percent(perc_curr, perc_tot, 1)
        perc_curr += 1

    dbif.close()
예제 #9
0
def main():
    # lazy imports
    import grass.temporal as tgis
    from grass.pygrass.utils import copy as gcopy
    from grass.pygrass.messages import Messenger
    from grass.pygrass.vector import Vector

    # Get the options
    input = options["input"]
    output = options["output"]
    strds = options["strds"]
    where = options["where"]
    tempwhere = options["t_where"]

    if output and flags['u']:
        grass.fatal(_("Cannot combine 'output' option and 'u' flag"))
    elif not output and not flags['u']:
        grass.fatal(_("'output' option or 'u' flag must be given"))
    elif not output and flags['u']:
        grass.warning(
            _("Attribute table of vector {name} will be updated...").format(
                name=input))

    if where == "" or where == " " or where == "\n":
        where = None

    overwrite = grass.overwrite()

    quiet = True

    if grass.verbosity() > 2:
        quiet = False

    # Check the number of sample strds and the number of columns
    strds_names = strds.split(",")

    # Make sure the temporal database exists
    tgis.init()
    # We need a database interface
    dbif = tgis.SQLDatabaseInterfaceConnection()
    dbif.connect()

    samples = []

    first_strds = tgis.open_old_stds(strds_names[0], "strds", dbif)
    # Single space time raster dataset
    if len(strds_names) == 1:
        granu = first_strds.get_granularity()
        rows = first_strds.get_registered_maps(
            "name,mapset,start_time,end_time", tempwhere, "start_time", dbif)

        if not rows:
            dbif.close()
            grass.fatal(
                _("Space time raster dataset <%s> is empty") %
                first_strds.get_id())
        for row in rows:
            start = row["start_time"]
            end = row["end_time"]
            raster_maps = [
                row["name"] + "@" + row["mapset"],
            ]

            s = Sample(start, end, raster_maps, first_strds.get_name(), granu)
            samples.append(s)
    else:
        # Multiple space time raster datasets
        for name in strds_names[1:]:
            dataset = tgis.open_old_stds(name, "strds", dbif)
            if dataset.get_temporal_type() != first_strds.get_temporal_type():
                grass.fatal(
                    _(
                        "Temporal type of space time raster "
                        "datasets must be equal\n<%(a)s> of type "
                        "%(type_a)s do not match <%(b)s> of type "
                        "%(type_b)s" % {
                            "a": first_strds.get_id(),
                            "type_a": first_strds.get_temporal_type(),
                            "b": dataset.get_id(),
                            "type_b": dataset.get_temporal_type()
                        }))

        mapmatrizes = tgis.sample_stds_by_stds_topology(
            "strds", "strds", strds_names, strds_names[0], False, None,
            "equal", False, False)
        #TODO check granularity for multiple STRDS
        for i in range(len(mapmatrizes[0])):
            isvalid = True
            mapname_list = []
            for mapmatrix in mapmatrizes:

                entry = mapmatrix[i]

                if entry["samples"]:
                    sample = entry["samples"][0]
                    name = sample.get_id()
                    if name is None:
                        isvalid = False
                        break
                    else:
                        mapname_list.append(name)

            if isvalid:
                entry = mapmatrizes[0][i]
                map = entry["granule"]

                start, end = map.get_temporal_extent_as_tuple()
                s = Sample(start, end, mapname_list, name)
                samples.append(s)

    # Get the layer and database connections of the input vector
    if output:
        gcopy(input, output, 'vector')
    else:
        output = input

    msgr = Messenger()
    perc_curr = 0
    perc_tot = len(samples)
    pymap = Vector(output)
    try:
        pymap.open('r')
    except:
        dbif.close()
        grass.fatal(_("Unable to create vector map <%s>" % output))

    if len(pymap.dblinks) == 0:
        try:
            pymap.close()
            grass.run_command("v.db.addtable", map=output)
        except CalledModuleError:
            dbif.close()
            grass.fatal(
                _("Unable to add table <%s> to vector map <%s>" % output))
    if pymap.is_open():
        pymap.close()

    for sample in samples:
        raster_names = sample.raster_names
        # Call v.what.rast for each raster map

        for name in raster_names:
            coltype = "DOUBLE PRECISION"
            # Get raster map type
            raster_map = tgis.RasterDataset(name)
            raster_map.load()
            if raster_map.metadata.get_datatype() == "CELL":
                coltype = "INT"
            day = sample.printDay()
            column_name = "%s_%s" % (sample.strds_name, day)
            column_string = "%s %s" % (column_name, coltype)
            column_string.replace('.', '_')
            try:
                grass.run_command("v.db.addcolumn",
                                  map=output,
                                  column=column_string,
                                  overwrite=overwrite)
            except CalledModuleError:
                dbif.close()
                grass.fatal(
                    _("Unable to add column %s to vector map "
                      "<%s> ") % (column_string, output))
            try:
                grass.run_command("v.what.rast",
                                  map=output,
                                  raster=name,
                                  column=column_name,
                                  where=where,
                                  quiet=quiet)
            except CalledModuleError:
                dbif.close()
                grass.fatal(
                    _("Unable to run v.what.rast for vector map"
                      " <%s> and raster map <%s>") %
                    (output, str(raster_names)))

        msgr.percent(perc_curr, perc_tot, 1)
        perc_curr += 1

    dbif.close()
예제 #10
0
def main(opt, flg):
    #
    # Set check variables
    #
    overwrite = True
    rasters = opt["rasters"].split(",") if opt["rasters"] else []
    rprefix = opt["rprefix"].split(",") if opt["rprefix"] else []

    def split(x):
        return x.split("@") if "@" in x else (x, "")

    vname, vmset = split(opt["vector"])
    shpcsv = opt["shpcsv"] if opt["shpcsv"] else vname + ".csv"
    rstcsv = (opt["rstcsv"].split(",") if opt["rstcsv"] else
              [split(rst)[0] + ".csv" for rst in rasters])
    zones = opt["zones"] if opt["zones"] else vname + "_zones"
    nprocs = int(opt.get("nprocs", 1))
    if rasters:
        if rprefix and len(rasters) != len(rprefix):
            raise
        if len(rasters) != len(rstcsv):
            raise
        prefixes = rprefix if rprefix else rasters
    else:
        prefixes = None

    skipshp = opt["skipshape"].split(",") if opt["skipshape"] else []
    skiprst = opt["skipunivar"].split(",") if opt["skipunivar"] else []
    layer = int(opt["layer"])
    newlayer = int(opt["newlayer"])
    newlayername = opt["newlayername"] if opt[
        "newlayername"] else vname + "_stats"
    newtabname = opt["newtabname"] if opt["newtabname"] else vname + "_stats"
    rstpercentile = float(opt["rstpercentile"])
    separator = opt.get("separator", ";")

    #
    # compute
    #
    if not os.path.exists(shpcsv):
        get_shp_csv(opt["vector"], shpcsv, overwrite, separator)
    if not get_mapset_raster(zones):
        get_zones(opt["vector"], zones, layer)
    if not rstcsv or not os.path.exists(rstcsv[0]):
        get_rst_csv(rasters, zones, rstcsv, rstpercentile, overwrite, nprocs,
                    separator)

    newlink = Link(newlayer, newlayername, newtabname)
    newtab = newlink.table()
    with Vector(vname, vmset, mode="r", layer=layer) as vct:
        mode = "r" if newlink in vct.dblinks else "rw"

    with VectorTopo(vname, vmset, mode=mode, layer=layer) as vct:
        update_cols(newtab,
                    shpcsv,
                    rstcsv,
                    prefixes,
                    skipshp,
                    skiprst,
                    separator=separator)

        if mode == "rw":
            # add the new link
            vct.dblinks.add(newlink)
            vct.build()
예제 #11
0
def extract_classes(vect, layer):
    vect, mset = vect.split('@') if '@'in vect else (vect, '')
    with Vector(vect, mapset=mset, layer=layer, mode='r') as vct:
        vct.table.filters.select('cat', 'class')
        return {key: val for key, val in vct.table.execute()}
예제 #12
0
#!/usr/bin/env python3

from grass.pygrass.vector import Vector

obce = Vector('obce_bod', mapset='ruian')
obce.open('r')

for prvek in obce:
    print ("{:<25}: {:.0f} {:.0f}".format(prvek.attrs['nazev'], prvek.x, prvek.y))
    
obce.close()
예제 #13
0
def main():

    try:
        import pysptools.eea as eea
    except ImportError:
        gs.fatal(_("Cannot import pysptools \
                      (https://pypi.python.org/pypi/pysptools) library."
                      " Please install it (pip install pysptools)"
                      " or ensure that it is on path"
                      " (use PYTHONPATH variable)."))

    try:
        # sklearn is a dependency of used pysptools functionality
        import sklearn
    except ImportError:
        gs.fatal(_("Cannot import sklearn \
                      (https://pypi.python.org/pypi/scikit-learn) library."
                      " Please install it (pip install scikit-learn)"
                      " or ensure that it is on path"
                      " (use PYTHONPATH variable)."))

    try:
        from cvxopt import solvers, matrix
    except ImportError:
        gs.fatal(_("Cannot import cvxopt \
                      (https://pypi.python.org/pypi/cvxopt) library."
                      " Please install it (pip install cvxopt)"
                      " or ensure that it is on path"
                      " (use PYTHONPATH variable)."))

    # Parse input options
    input = options['input']
    output = options['output']
    prefix = options['prefix']
    endmember_n = int(options['endmember_n'])
    endmembers = options['endmembers']
    if options['maxit']:
        maxit = options['maxit']
    else:
        maxit = 0
    extraction_method = options['extraction_method']
    unmixing_method = options['unmixing_method']
    atgp_init = True if not flags['n'] else False

    # List maps in imagery group
    try:
        maps = gs.read_command('i.group', flags='g', group=input,
                               quiet=True).rstrip('\n').split('\n')
    except:
        pass

    # Validate input
    # q and maxit can be None according to manual, but does not work in current pysptools version
    if endmember_n <= 0:
        gs.fatal('Number of endmembers has to be > 0')
        """if (extraction_method == 'PPI' or
            extraction_method == 'NFINDR'):
            gs.fatal('Extraction methods PPI and NFINDR require endmember_n >= 2')
        endmember_n = None"""

    if maxit <= 0:
        maxit = 3 * len(maps)

    if endmember_n > len(maps) + 1:
        gs.warning('More endmembers ({}) requested than bands in \
                   input imagery group ({})'.format(endmember_n, len(maps)))
        if extraction_method != 'PPI':
            gs.fatal('Only PPI method can extract more endmembers than number \
                     of bands in the imagery group')

    if not atgp_init and extraction_method != 'NFINDR':
        gs.verbose('ATGP is only taken into account in \
                   NFINDR extraction method...')

    # Get metainformation from input bands
    band_types = {}
    img = None
    n = 0
    gs.verbose('Reading imagery group...')
    for m in maps:
        map = m.split('@')

        # Build numpy stack from imagery group
        raster = r.raster2numpy(map[0], mapset=map[1])
        if raster == np.float64:
            raster = float32(raster)
            gs.warning('{} is of type Float64.\
                        Float64 is currently not supported.\
                        Reducing precision to Float32'.format(raster))

        # Determine map type
        band_types[map[0]] = get_rastertype(raster)

        # Create cube and mask from GRASS internal NoData value
        if n == 0:
            img = raster
            # Create mask from GRASS internal NoData value
            mask = mask_rasternd(raster)
        else:
            img = np.dstack((img, raster))
            mask = np.logical_and((mask_rasternd(raster)), mask)

        n = n + 1

    # Read a mask if present and give waringing if not
    # Note that otherwise NoData is read as values
    gs.verbose('Checking for MASK...')
    try:
        MASK = r.raster2numpy('MASK', mapset=getenv('MAPSET')) == 1
        mask = np.logical_and(MASK, mask)
        MASK = None
    except:
        pass

    if extraction_method == 'NFINDR':
    # Extract endmembers from valid pixels using NFINDR function from pysptools
        gs.verbose('Extracting endmembers using NFINDR...')
        nfindr = eea.NFINDR()
        E = nfindr.extract(img, endmember_n, maxit=maxit, normalize=False,
                           ATGP_init=atgp_init, mask=mask)
    elif extraction_method == 'PPI':
    # Extract endmembers from valid pixels using PPI function from pysptools
        gs.verbose('Extracting endmembers using PPI...')
        ppi = eea.PPI()
        E = ppi.extract(img, endmember_n, numSkewers=10000, normalize=False,
                        mask=mask)
    elif extraction_method == 'FIPPI':
    # Extract endmembers from valid pixels using FIPPI function from pysptools
        gs.verbose('Extracting endmembers using FIPPI...')
        fippi = eea.FIPPI()
        # q and maxit can be None according to manual, but does not work
        """if not maxit and not endmember_n:
            E = fippi.extract(img, q=None, normalize=False, mask=mask)
        if not maxit:
            E = fippi.extract(img, q=endmember_n, normalize=False, mask=mask)
        if not endmember_n:
            E = fippi.extract(img, q=int(), maxit=maxit, normalize=False,
                              mask=mask)
        else:
            E = fippi.extract(img, q=endmember_n, maxit=maxit, normalize=False,
                              mask=mask)"""
        E = fippi.extract(img, q=endmember_n, maxit=maxit, normalize=False,
                          mask=mask)

    # Write output file in format required for i.spec.unmix addon
    if output:
        gs.verbose('Writing spectra file...')
        n = 0
        with open(output, 'w') as o:
            o.write('# Channels: {}\n'.format('\t'.join(band_types.keys())))
            o.write('# Wrote {} spectra line wise.\n#\n'.format(endmember_n))
            o.write('Matrix: {0} by {1}\n'.format(endmember_n, len(maps)))
            for e in E:
                o.write('row{0}: {1}\n'.format(n, '\t'.join([str(i) for i in  e])))
                n = n + 1

    # Write vector map with endmember information if requested
    if endmembers:
        gs.verbose('Writing vector map with endmembers...')
        from grass.pygrass import utils as u
        from grass.pygrass.gis.region import Region
        from grass.pygrass.vector import Vector
        from grass.pygrass.vector import VectorTopo
        from grass.pygrass.vector.geometry import Point

        # Build attribute table
        # Deinfe columns for attribute table
        cols = [(u'cat',       'INTEGER PRIMARY KEY')]
        for b in band_types.keys():
            cols.append((b.replace('.','_'), band_types[b]))
        
        # Get region information
        reg = Region()

        # Create vector map
        new = Vector(endmembers)
        new.open('w', tab_name=endmembers, tab_cols=cols)

        cat = 1
        for e in E:
            # Get indices
            idx = np.where((img[:,:]==e).all(-1))

            # Numpy array is ordered rows, columns (y,x)
            if len(idx[0]) == 0 or len(idx[1]) == 0:
                gs.warning('Could not compute coordinated for endmember {}. \
                            Please consider rescaling your data to integer'.format(cat))
                cat = cat + 1
                continue

            coords = u.pixel2coor((idx[1][0], idx[0][0]), reg)
            point = Point(coords[1] + reg.ewres / 2.0,
                          coords[0] - reg.nsres / 2.0)

            # Get attributes
            n = 0
            attr = []
            for b in band_types.keys():
                if band_types[b] == u'INTEGER':
                    attr.append(int(e[n]))
                else:
                    attr.append(float(e[n]))
                n = n + 1

            # Write geometry with attributes
            new.write(point, cat=cat,
                      attrs=tuple(attr))
            cat = cat + 1

        # Close vector map
        new.table.conn.commit()
        new.close(build=True)

    if prefix:
        # Run spectral unmixing
        import pysptools.abundance_maps as amaps
        if unmixing_method == 'FCLS':
            fcls = amaps.FCLS()
            result = fcls.map(img, E, normalize=False, mask=mask)
        elif unmixing_method == 'NNLS':
            nnls = amaps.NNLS()
            result = nnls.map(img, E, normalize=False, mask=mask)
        elif unmixing_method == 'UCLS':
            ucls = amaps.UCLS()
            result = ucls.map(img, E, normalize=False, mask=mask)

        # Write results
        for l in range(endmember_n):
            rastname = '{0}_{1}'.format(prefix, l + 1)
            r.numpy2raster(result[:,:,l], 'FCELL', rastname)
예제 #14
0
def main():
    # Get the options
    input = options["input"]
    output = options["output"]
    strds = options["strds"]
    where = options["where"]
    tempwhere = options["t_where"]

    if output and flags['u']:
        grass.fatal(_("Cannot combine 'output' option and 'u' flag"))
    elif not output and not flags['u']:
        grass.fatal(_("'output' option or 'u' flag must be given"))
    elif not output and flags['u']:
        grass.warning(_("Attribute table of vector {name} will be updated...").format(name=input))

    if where == "" or where == " " or where == "\n":
        where = None

    overwrite = grass.overwrite()

    quiet = True

    if grass.verbosity() > 2:
        quiet = False

    # Check the number of sample strds and the number of columns
    strds_names = strds.split(",")

    # Make sure the temporal database exists
    tgis.init()
    # We need a database interface
    dbif = tgis.SQLDatabaseInterfaceConnection()
    dbif.connect()

    samples = []

    first_strds = tgis.open_old_stds(strds_names[0], "strds", dbif)
    # Single space time raster dataset
    if len(strds_names) == 1:
        rows = first_strds.get_registered_maps("name,mapset,start_time,end_time",
                                               tempwhere, "start_time",
                                               dbif)

        if not rows:
            dbif.close()
            grass.fatal(_("Space time raster dataset <%s> is empty") %
                        first_strds.get_id())

        for row in rows:
            start = row["start_time"]
            end = row["end_time"]
            raster_maps = [row["name"] + "@" + row["mapset"], ]

            s = Sample(start, end, raster_maps, first_strds.get_name())
            samples.append(s)
    else:
        # Multiple space time raster datasets
        for name in strds_names[1:]:
            dataset = tgis.open_old_stds(name, "strds", dbif)
            if dataset.get_temporal_type() != first_strds.get_temporal_type():
                grass.fatal(_("Temporal type of space time raster "
                              "datasets must be equal\n<%(a)s> of type "
                              "%(type_a)s do not match <%(b)s> of type "
                              "%(type_b)s" % {"a": first_strds.get_id(),
                               "type_a": first_strds.get_temporal_type(),
                               "b": dataset.get_id(),
                               "type_b": dataset.get_temporal_type()}))

        mapmatrizes = tgis.sample_stds_by_stds_topology("strds", "strds",
                                                        strds_names,
                                                        strds_names[0],
                                                        False, None,
                                                        "equal", False,
                                                        False)

        for i in xrange(len(mapmatrizes[0])):
            isvalid = True
            mapname_list = []
            for mapmatrix in mapmatrizes:

                entry = mapmatrix[i]

                if entry["samples"]:
                    sample = entry["samples"][0]
                    name = sample.get_id()
                    if name is None:
                        isvalid = False
                        break
                    else:
                        mapname_list.append(name)

            if isvalid:
                entry = mapmatrizes[0][i]
                map = entry["granule"]

                start, end = map.get_temporal_extent_as_tuple()
                s = Sample(start, end, mapname_list, name)
                samples.append(s)

    # Get the layer and database connections of the input vector
    if output:
        gcopy(input, output, 'vector')
    else:
        output = input

    msgr = Messenger()
    perc_curr = 0
    perc_tot = len(samples)
    pymap = Vector(output)
    try:
        pymap.open('r')
    except:
        dbif.close()
        grass.fatal(_("It is not possible to open the new map %s" % output))

    if len(pymap.dblinks) == 0:
        try:
            grass.run_command("v.db.addtable", map=output)
        except CalledModuleError:
            dbif.close()
            grass.fatal(_("Impossible add table to vector %s" % output))
    pymap.close()
    for sample in samples:
        raster_names = sample.raster_names
        # Call v.what.rast for each raster map

        for name in raster_names:
            coltype = "DOUBLE PRECISION"
            # Get raster map type
            raster_map = tgis.RasterDataset(name)
            raster_map.load()
            if raster_map.metadata.get_datatype() == "CELL":
                coltype = "INT"
            day = sample.printDay()
            column_name = "%s_%s" % (sample.strds_name, day)
            column_string = "%s %s" % (column_name, coltype)
            column_string.replace('.', '_')
            try:
                grass.run_command("v.db.addcolumn", map=output,
                                  column=column_string,
                                  overwrite=overwrite)
            except CalledModuleError:
                dbif.close()
                grass.fatal(_("Unable to add column %s to vector map "
                              "<%s> ") % (column_string, output))
            try:
                grass.run_command("v.what.rast", map=output, raster=name,
                                  column=column_name, where=where,
                                  quiet=quiet)
            except CalledModuleError:
                dbif.close()
                grass.fatal(_("Unable to run v.what.rast for vector map"
                              " <%s> and raster map <%s>") %
                            (output, str(raster_names)))

        msgr.percent(perc_curr, perc_tot, 1)
        perc_curr += 1

    dbif.close()
예제 #15
0
def get_colors(vtraining):
    vect, mset = vtraining.split("@") if "@" in vtraining else (vtraining, "")
    with Vector(vect, mapset=mset, mode="r") as vct:
        cur = vct.table.execute("SELECT cat, color FROM %s;" % vct.name)
        return dict([c for c in cur.fetchall()])
예제 #16
0
def main():

    try:
        from pygbif import occurrences
        from pygbif import species
    except ImportError:
        grass.fatal(_("Cannot import pygbif (https://github.com/sckott/pygbif)"
                      " library."
                      " Please install it (pip install pygbif)"
                      " or ensure that it is on path"
                      " (use PYTHONPATH variable)."))

    # Parse input options
    output = options['output']
    mask = options['mask']
    species_maps = flags['i']
    no_region_limit = flags['r']
    no_topo = flags['b']
    print_species = flags['p']
    print_species_table = flags['t']
    print_species_shell = flags['g']
    print_occ_number = flags['o']
    allow_no_geom = flags['n']
    hasGeoIssue = flags['s']
    taxa_list = options['taxa'].split(',')
    institutionCode = options['institutioncode']
    basisofrecord = options['basisofrecord']
    recordedby = options['recordedby'].split(',')
    date_from = options['date_from']
    date_to = options['date_to']
    country = options['country']
    continent = options['continent']
    rank = options['rank']

    # Define static variable
    #Initialize cat
    cat = 0
    # Number of occurrences to fetch in one request
    chunk_size = 300
    # lat/lon proj string
    latlon_crs = ['+proj=longlat +no_defs +a=6378137 +rf=298.257223563 +towgs84=0.000,0.000,0.000',
                  '+proj=longlat +no_defs +a=6378137 +rf=298.257223563 +towgs84=0,0,0,0,0,0,0']
    # List attributes available in Darwin Core
    # not all attributes are returned in each request
    # to avoid key errors when accessing the dictionary returned by pygbif
    # presence of DWC keys in the returned dictionary is checked using this list
    # The number of keys in this list has to be equal to the number of columns
    # in the attribute table and the attributes written for each occurrence
    dwc_keys = ['key', 'taxonRank', 'taxonKey', 'taxonID', 'scientificName',
                'species', 'speciesKey', 'genericName', 'genus', 'genusKey',
                'family', 'familyKey', 'order', 'orderKey', 'class',
                'classKey', 'phylum', 'phylumKey', 'kingdom', 'kingdomKey',
                'eventDate', 'verbatimEventDate', 'startDayOfYear',
                'endDayOfYear', 'year', 'month', 'day', 'occurrenceID',
                'occurrenceStatus', 'occurrenceRemarks', 'Habitat',
                'basisOfRecord', 'preparations', 'sex', 'type', 'locality',
                'verbatimLocality', 'decimalLongitude', 'decimalLatitude',
                'geodeticDatum', 'higerGeography', 'continent', 'country',
                'countryCode', 'stateProvince', 'gbifID', 'protocol',
                'identifier', 'recordedBy', 'identificationID', 'identifiers',
                'dateIdentified', 'modified', 'institutionCode',
                'lastInterpreted', 'lastParsed', 'references', 'relations',
                'catalogNumber', 'occurrenceDetails', 'datasetKey',
                'datasetName', 'collectionCode', 'rights', 'rightsHolder',
                'license', 'publishingOrgKey', 'publishingCountry',
                'lastCrawled', 'specificEpithet', 'facts', 'issues',
                'extensions', 'language']
    # Deinfe columns for attribute table
    cols = [('cat',       'INTEGER PRIMARY KEY'),
            ('g_search',       'varchar(100)'),
            ('g_key',       'integer'),
            ('g_taxonrank',       'varchar(50)'),
            ('g_taxonkey',       'integer'),
            ('g_taxonid',       'varchar(50)'),
            ('g_scientificname',       'varchar(255)'),
            ('g_species',       'varchar(255)'),
            ('g_specieskey',       'integer'),
            ('g_genericname',       'varchar(255)'),
            ('g_genus',       'varchar(50)'),
            ('g_genuskey',       'integer'),
            ('g_family',       'varchar(50)'),
            ('g_familykey',       'integer'),
            ('g_order',       'varchar(50)'),
            ('g_orderkey',       'integer'),
            ('g_class',       'varchar(50)'),
            ('g_classkey',       'integer'),
            ('g_phylum',       'varchar(50)'),
            ('g_phylumkey',       'integer'),
            ('g_kingdom',       'varchar(50)'),
            ('g_kingdomkey',       'integer'),
            ('g_eventdate',       'text'),
            ('g_verbatimeventdate',       'varchar(50)'),
            ('g_startDayOfYear',       'integer'),
            ('g_endDayOfYear',       'integer'),
            ('g_year',       'integer'),
            ('g_month',       'integer'),
            ('g_day',       'integer'),
            ('g_occurrenceid',       'varchar(255)'),
            ('g_occurrenceStatus',       'varchar(50)'),
            ('g_occurrenceRemarks',       'varchar(50)'),
            ('g_Habitat',       'varchar(50)'),
            ('g_basisofrecord',       'varchar(50)'),
            ('g_preparations',       'varchar(50)'),
            ('g_sex',       'varchar(50)'),
            ('g_type',       'varchar(50)'),
            ('g_locality',       'varchar(255)'),
            ('g_verbatimlocality',       'varchar(255)'),
            ('g_decimallongitude',       'double precision'),
            ('g_decimallatitude',       'double precision'),
            ('g_geodeticdatum',       'varchar(50)'),
            ('g_higerGeography',       'varchar(255)'),
            ('g_continent',       'varchar(50)'),
            ('g_country',       'varchar(50)'),
            ('g_countryCode',       'varchar(50)'),
            ('g_stateProvince',       'varchar(50)'),
            ('g_gbifid',       'varchar(255)'),
            ('g_protocol',       'varchar(255)'),
            ('g_identifier',       'varchar(50)'),
            ('g_recordedby',       'varchar(255)'),
            ('g_identificationid',       'varchar(255)'),
            ('g_identifiers',       'text'),
            ('g_dateidentified',       'text'),
            ('g_modified',       'text'),
            ('g_institutioncode',       'varchar(50)'),
            ('g_lastinterpreted',       'text'),
            ('g_lastparsed',       'text'),
            ('g_references',       'varchar(255)'),
            ('g_relations',       'text'),
            ('g_catalognumber',       'varchar(50)'),
            ('g_occurrencedetails',       'text'),
            ('g_datasetkey',       'varchar(50)'),
            ('g_datasetname',       'varchar(255)'),
            ('g_collectioncode',       'varchar(50)'),
            ('g_rights',       'varchar(255)'),
            ('g_rightsholder',       'varchar(255)'),
            ('g_license',       'varchar(50)'),
            ('g_publishingorgkey',       'varchar(50)'),
            ('g_publishingcountry',       'varchar(50)'),
            ('g_lastcrawled',       'text'),
            ('g_specificepithet',       'varchar(50)'),
            ('g_facts',       'text'),
            ('g_issues',       'text'),
            ('g_extensions',       'text'),
            ('g_language',       'varchar(50)')]

    set_output_encoding()
    # Set temporal filter if requested by user
    # Initialize eventDate filter
    eventDate = None
    # Check if date from is compatible (ISO compliant)
    if date_from:
        try:
            parse(date_from)
        except:
            grass.fatal("Invalid invalid start date provided")

        if date_from and not date_to:
            eventDate = '{}'.format(date_from)
    # Check if date to is compatible (ISO compliant)
    if date_to:
        try:
            parse(date_to)
        except:
            grass.fatal("Invalid invalid end date provided")
        # Check if date to is after date_from
        if parse(date_from) < parse(date_to):
            eventDate = '{},{}'.format(date_from, date_to)
        else:
            grass.fatal("Invalid date range: End date has to be after start date!")
    # Set filter on basisOfRecord if requested by user
    if basisofrecord == 'ALL':
        basisOfRecord = None
    else:
        basisOfRecord = basisofrecord
    # Allow also occurrences with spatial issues if requested by user
    hasGeospatialIssue = False
    if hasGeoIssue:
        hasGeospatialIssue = True
    # Allow also occurrences without coordinates if requested by user
    hasCoordinate = True
    if allow_no_geom:
        hasCoordinate = False

    # Set reprojection parameters
    # Set target projection of current LOCATION
    target_crs = grass.read_command('g.proj', flags='fj').rstrip(os.linesep)
    target = osr.SpatialReference(target_crs)
    target.ImportFromProj4(target_crs)
    if target == 'XY location (unprojected)':
        grass.fatal("Sorry, XY locations are not supported!")

    # Set source projection from GBIF
    source = osr.SpatialReference()
    source.ImportFromEPSG(4326)
    if target_crs not in latlon_crs:
        transform = osr.CoordinateTransformation(source, target)
        reverse_transform = osr.CoordinateTransformation(target, source)

    # Generate WKT polygon to use for spatial filtering if requested
    if mask:
        if len(mask.split('@')) == 2:
            m = VectorTopo(mask.split('@')[0], mapset=mask.split('@')[1])
        else:
            m = VectorTopo(mask)
        if not m.exist():
            grass.fatal('Could not find vector map <{}>'.format(mask))
        m.open('r')
        if not m.is_open():
            grass.fatal('Could not open vector map <{}>'.format(mask))

        # Use map Bbox as spatial filter if map contains <> 1 area
        if m.number_of('areas') == 1:
            region_pol = [area.to_wkt() for area in m.viter("areas")][0]
        else:
            bbox = str(m.bbox()).replace('Bbox(', '').replace(' ', '').rstrip(')').split(',')
            region_pol = 'POLYGON(({0} {1}, {0} {3}, {2} {3}, {2} {1}, {0} {1}))'.format(bbox[2],
                         bbox[0], bbox[3], bbox[1])
        m.close()
    else:
        # Do not limit import spatially if LOCATION is able to take global data
        if no_region_limit:
            if target_crs not in latlon_crs:
                grass.fatal('Import of data from outside the current region is'
                            'only supported in a WGS84 location!')
            region_pol = None
        else:
            # Limit import spatially to current region
            # if LOCATION is !NOT! able to take global data
            # to avoid pprojection ERRORS
            region = grass.parse_command('g.region', flags='g')
            region_pol = 'POLYGON(({0} {1}, {0} {3}, {2} {3}, {2} {1}, {0} {1}))'.format(region['e'],
                         region['n'], region['w'], region['s'])

    # Do not reproject in latlon LOCATIONS
    if target_crs not in latlon_crs:
        pol = ogr.CreateGeometryFromWkt(region_pol)
        pol.Transform(reverse_transform)
        pol = pol.ExportToWkt()
    else:
        pol = region_pol

    # Create output map if not output maps for each species are requested
    if not species_maps and not print_species and not print_species_shell and not print_occ_number and not print_species_table:
        mapname = output
        new = Vector(mapname)
        new.open('w', tab_name=mapname, tab_cols=cols)
        cat = 1

    # Import data for each species
    for s in taxa_list:
        # Get the taxon key if not the taxon key is provided as input
        try:
            key = int(s)
        except:
            try:
                species_match = species.name_backbone(s, rank=rank,
                                                      strict=False,
                                                      verbose=True)
                key = species_match['usageKey']
            except:
                grass.error('Data request for taxon {} failed. Are you online?'.format(s))
                continue

        # Return matching taxon and alternatives and exit
        if print_species:
            print('Matching taxon for {} is:'.format(s))
            print('{} {}'.format(species_match['scientificName'], species_match['status']))
            if 'alternatives' in list(species_match.keys()):
                print('Alternative matches might be:'.format(s))
                for m in species_match['alternatives']:
                    print('{} {}'.format(m['scientificName'], m['status']))
            else:
                print('No alternatives found for the given taxon')
            continue
        if print_species_shell:
            print('match={}'.format(species_match['scientificName']))
            if 'alternatives' in list(species_match.keys()):
                alternatives = []
                for m in species_match['alternatives']:
                    alternatives.append(m['scientificName'])
                print('alternatives={}'.format(','.join(alternatives)))
            continue
        if print_species_table:
            if 'alternatives' in list(species_match.keys()):
                if len(species_match['alternatives']) == 0:
                    print('{0}|{1}|{2}|'.format(s, key, species_match['scientificName']))
                else:
                    alternatives = []
                    for m in species_match['alternatives']:
                        alternatives.append(m['scientificName'])
                    print('{0}|{1}|{2}|{3}'.format(s, key, species_match['scientificName'],
                                                    ','.join(alternatives)))
            continue
        try:
            returns_n = occurrences.search(taxonKey=key,
                                           hasGeospatialIssue=hasGeospatialIssue,
                                           hasCoordinate=hasCoordinate,
                                           institutionCode=institutionCode,
                                           basisOfRecord=basisOfRecord,
                                           recordedBy=recordedby,
                                           eventDate=eventDate,
                                           continent=continent,
                                           country=country,
                                           geometry=pol,
                                           limit=1)['count']
        except:
            grass.error('Data request for taxon {} faild. Are you online?'.format(s))
            returns_n = 0

        # Exit if search does not give a return
        # Print only number of returns for the given search and exit
        if print_occ_number:
            grass.message('Found {0} occurrences for taxon {1}...'.format(returns_n, s))
            continue
        elif returns_n <= 0:
            grass.warning('No occurrences for current search for taxon {0}...'.format(s))
            continue
        elif returns_n >= 200000:
            grass.warning('Your search for {1} returns {0} records.\n'
                          'Unfortunately, the GBIF search API is limited to 200,000 records per request.\n'
                          'The download will be incomplete. Please consider to split up your search.'.format(returns_n, s))

        # Get the number of chunks to download
        chunks = int(math.ceil(returns_n / float(chunk_size)))
        grass.verbose('Downloading {0} occurrences for taxon {1}...'.format(returns_n, s))

        # Create a map for each species if requested using map name as suffix
        if species_maps:
            mapname = '{}_{}'.format(s.replace(' ', '_'), output)

            new = Vector(mapname)
            new.open('w', tab_name=mapname, tab_cols=cols)
            cat = 0

        # Download the data from GBIF
        for c in range(chunks):
            # Define offset
            offset = c * chunk_size
            # Adjust chunk_size to the hard limit of 200,000 records in GBIF API
            # if necessary
            if offset + chunk_size >= 200000:
                chunk_size = 200000 - offset
            # Get the returns for the next chunk
            returns = occurrences.search(taxonKey=key,
                                         hasGeospatialIssue=hasGeospatialIssue,
                                         hasCoordinate=hasCoordinate,
                                         institutionCode=institutionCode,
                                         basisOfRecord=basisOfRecord,
                                         recordedBy=recordedby,
                                         eventDate=eventDate,
                                         continent=continent,
                                         country=country,
                                         geometry=pol,
                                         limit=chunk_size,
                                         offset=offset)

            # Write the returned data to map and attribute table
            for res in returns['results']:
                if target_crs not in latlon_crs:
                    point = ogr.CreateGeometryFromWkt('POINT ({} {})'.format(res['decimalLongitude'], res['decimalLatitude']))
                    point.Transform(transform)
                    x = point.GetX()
                    y = point.GetY()
                else:
                    x = res['decimalLongitude']
                    y = res['decimalLatitude']

                point = Point(x, y)

                for k in dwc_keys:
                    if k not in list(res.keys()):
                        res.update({k: None})

                cat = cat + 1
                new.write(point, cat=cat, attrs=(
                          '{}'.format(s),
                          res['key'],
                          res['taxonRank'],
                          res['taxonKey'],
                          res['taxonID'],
                          res['scientificName'],
                          res['species'],
                          res['speciesKey'],
                          res['genericName'],
                          res['genus'],
                          res['genusKey'],
                          res['family'],
                          res['familyKey'],
                          res['order'],
                          res['orderKey'],
                          res['class'],
                          res['classKey'],
                          res['phylum'],
                          res['phylumKey'],
                          res['kingdom'],
                          res['kingdomKey'],
                          '{}'.format(res['eventDate']) if res['eventDate'] else None,
                          '{}'.format(res['verbatimEventDate']) if res['verbatimEventDate'] else None,
                          res['startDayOfYear'],
                          res['endDayOfYear'],
                          res['year'],
                          res['month'],
                          res['day'],
                          res['occurrenceID'],
                          res['occurrenceStatus'],
                          res['occurrenceRemarks'],
                          res['Habitat'],
                          res['basisOfRecord'],
                          res['preparations'],
                          res['sex'],
                          res['type'],
                          res['locality'],
                          res['verbatimLocality'],
                          res['decimalLongitude'],
                          res['decimalLatitude'],
                          res['geodeticDatum'],
                          res['higerGeography'],
                          res['continent'],
                          res['country'],
                          res['countryCode'],
                          res['stateProvince'],
                          res['gbifID'],
                          res['protocol'],
                          res['identifier'],
                          res['recordedBy'],
                          res['identificationID'],
                          ','.join(res['identifiers']),
                          '{}'.format(res['dateIdentified']) if res['dateIdentified'] else None,
                          '{}'.format(res['modified']) if res['modified'] else None,
                          res['institutionCode'],
                          '{}'.format(res['lastInterpreted']) if res['lastInterpreted'] else None,
                          '{}'.format(res['lastParsed']) if res['lastParsed'] else None,
                          res['references'],
                          ','.join(res['relations']),
                          res['catalogNumber'],
                          '{}'.format(res['occurrenceDetails']) if res['occurrenceDetails'] else None,
                          res['datasetKey'],
                          res['datasetName'],
                          res['collectionCode'],
                          res['rights'],
                          res['rightsHolder'],
                          res['license'],
                          res['publishingOrgKey'],
                          res['publishingCountry'],
                          '{}'.format(res['lastCrawled']) if res['lastCrawled'] else None,
                          res['specificEpithet'],
                          ','.join(res['facts']),
                          ','.join(res['issues']),
                          ','.join(res['extensions']),
                          res['language'],))

                cat = cat + 1

        # Close the current map if a map for each species is requested
        if species_maps:
            new.table.conn.commit()
            new.close()
            if not no_topo:
                grass.run_command('v.build', map=mapname, option='build')

    # Close the output map if not a map for each species is requested
    if not species_maps and not print_species and not print_species_shell and not print_occ_number and not print_species_table:
        new.table.conn.commit()
        new.close()
        if not no_topo:
            grass.run_command('v.build', map=mapname, option='build')
예제 #17
0
#!/usr/bin/env python

from grass.pygrass.vector import Vector

obce = Vector('obce_bod', mapset='ruian')
obce.open('r')

for prvek in obce:
    print (u"{:<25}: {:.0f} {:.0f}".format(prvek.attrs['nazev'], prvek.x, prvek.y))
    
obce.close()
예제 #18
0
def main():
    from dateutil.parser import parse

    try:
        from pygbif import occurrences
        from pygbif import species
    except ImportError:
        grass.fatal(
            _("Cannot import pygbif (https://github.com/sckott/pygbif)"
              " library."
              " Please install it (pip install pygbif)"
              " or ensure that it is on path"
              " (use PYTHONPATH variable)."))

    # Parse input options
    output = options["output"]
    mask = options["mask"]
    species_maps = flags["i"]
    no_region_limit = flags["r"]
    no_topo = flags["b"]
    print_species = flags["p"]
    print_species_table = flags["t"]
    print_species_shell = flags["g"]
    print_occ_number = flags["o"]
    allow_no_geom = flags["n"]
    hasGeoIssue = flags["s"]
    taxa_list = options["taxa"].split(",")
    institutionCode = options["institutioncode"]
    basisofrecord = options["basisofrecord"]
    recordedby = options["recordedby"].split(",")
    date_from = options["date_from"]
    date_to = options["date_to"]
    country = options["country"]
    continent = options["continent"]
    rank = options["rank"]

    # Define static variable
    # Initialize cat
    cat = 0
    # Number of occurrences to fetch in one request
    chunk_size = 300
    # lat/lon proj string
    latlon_crs = [
        "+proj=longlat +no_defs +a=6378137 +rf=298.257223563 +towgs84=0.000,0.000,0.000",
        "+proj=longlat +no_defs +a=6378137 +rf=298.257223563 +towgs84=0,0,0,0,0,0,0",
        "+proj=longlat +no_defs +a=6378137 +rf=298.257223563 +towgs84=0.000,0.000,0.000 +type=crs",
    ]
    # List attributes available in Darwin Core
    # not all attributes are returned in each request
    # to avoid key errors when accessing the dictionary returned by pygbif
    # presence of DWC keys in the returned dictionary is checked using this list
    # The number of keys in this list has to be equal to the number of columns
    # in the attribute table and the attributes written for each occurrence
    dwc_keys = [
        "key",
        "taxonRank",
        "taxonKey",
        "taxonID",
        "scientificName",
        "species",
        "speciesKey",
        "genericName",
        "genus",
        "genusKey",
        "family",
        "familyKey",
        "order",
        "orderKey",
        "class",
        "classKey",
        "phylum",
        "phylumKey",
        "kingdom",
        "kingdomKey",
        "eventDate",
        "verbatimEventDate",
        "startDayOfYear",
        "endDayOfYear",
        "year",
        "month",
        "day",
        "occurrenceID",
        "occurrenceStatus",
        "occurrenceRemarks",
        "Habitat",
        "basisOfRecord",
        "preparations",
        "sex",
        "type",
        "locality",
        "verbatimLocality",
        "decimalLongitude",
        "decimalLatitude",
        "coordinateUncertaintyInMeters",
        "geodeticDatum",
        "higerGeography",
        "continent",
        "country",
        "countryCode",
        "stateProvince",
        "gbifID",
        "protocol",
        "identifier",
        "recordedBy",
        "identificationID",
        "identifiers",
        "dateIdentified",
        "modified",
        "institutionCode",
        "lastInterpreted",
        "lastParsed",
        "references",
        "relations",
        "catalogNumber",
        "occurrenceDetails",
        "datasetKey",
        "datasetName",
        "collectionCode",
        "rights",
        "rightsHolder",
        "license",
        "publishingOrgKey",
        "publishingCountry",
        "lastCrawled",
        "specificEpithet",
        "facts",
        "issues",
        "extensions",
        "language",
    ]
    # Deinfe columns for attribute table
    cols = [
        ("cat", "INTEGER PRIMARY KEY"),
        ("g_search", "varchar(100)"),
        ("g_key", "integer"),
        ("g_taxonrank", "varchar(50)"),
        ("g_taxonkey", "integer"),
        ("g_taxonid", "varchar(50)"),
        ("g_scientificname", "varchar(255)"),
        ("g_species", "varchar(255)"),
        ("g_specieskey", "integer"),
        ("g_genericname", "varchar(255)"),
        ("g_genus", "varchar(50)"),
        ("g_genuskey", "integer"),
        ("g_family", "varchar(50)"),
        ("g_familykey", "integer"),
        ("g_order", "varchar(50)"),
        ("g_orderkey", "integer"),
        ("g_class", "varchar(50)"),
        ("g_classkey", "integer"),
        ("g_phylum", "varchar(50)"),
        ("g_phylumkey", "integer"),
        ("g_kingdom", "varchar(50)"),
        ("g_kingdomkey", "integer"),
        ("g_eventdate", "text"),
        ("g_verbatimeventdate", "varchar(50)"),
        ("g_startDayOfYear", "integer"),
        ("g_endDayOfYear", "integer"),
        ("g_year", "integer"),
        ("g_month", "integer"),
        ("g_day", "integer"),
        ("g_occurrenceid", "varchar(255)"),
        ("g_occurrenceStatus", "varchar(50)"),
        ("g_occurrenceRemarks", "varchar(50)"),
        ("g_Habitat", "varchar(50)"),
        ("g_basisofrecord", "varchar(50)"),
        ("g_preparations", "varchar(50)"),
        ("g_sex", "varchar(50)"),
        ("g_type", "varchar(50)"),
        ("g_locality", "varchar(255)"),
        ("g_verbatimlocality", "varchar(255)"),
        ("g_decimallongitude", "double precision"),
        ("g_decimallatitude", "double precision"),
        ("g_coordinateUncertaintyInMeters", "double precision"),
        ("g_geodeticdatum", "varchar(50)"),
        ("g_higerGeography", "varchar(255)"),
        ("g_continent", "varchar(50)"),
        ("g_country", "varchar(50)"),
        ("g_countryCode", "varchar(50)"),
        ("g_stateProvince", "varchar(50)"),
        ("g_gbifid", "varchar(255)"),
        ("g_protocol", "varchar(255)"),
        ("g_identifier", "varchar(50)"),
        ("g_recordedby", "varchar(255)"),
        ("g_identificationid", "varchar(255)"),
        ("g_identifiers", "text"),
        ("g_dateidentified", "text"),
        ("g_modified", "text"),
        ("g_institutioncode", "varchar(50)"),
        ("g_lastinterpreted", "text"),
        ("g_lastparsed", "text"),
        ("g_references", "varchar(255)"),
        ("g_relations", "text"),
        ("g_catalognumber", "varchar(50)"),
        ("g_occurrencedetails", "text"),
        ("g_datasetkey", "varchar(50)"),
        ("g_datasetname", "varchar(255)"),
        ("g_collectioncode", "varchar(50)"),
        ("g_rights", "varchar(255)"),
        ("g_rightsholder", "varchar(255)"),
        ("g_license", "varchar(50)"),
        ("g_publishingorgkey", "varchar(50)"),
        ("g_publishingcountry", "varchar(50)"),
        ("g_lastcrawled", "text"),
        ("g_specificepithet", "varchar(50)"),
        ("g_facts", "text"),
        ("g_issues", "text"),
        ("g_extensions", "text"),
        ("g_language", "varchar(50)"),
    ]

    # maybe no longer required in Python3
    set_output_encoding()
    # Set temporal filter if requested by user
    # Initialize eventDate filter
    eventDate = None
    # Check if date from is compatible (ISO compliant)
    if date_from:
        try:
            parse(date_from)
        except:
            grass.fatal("Invalid invalid start date provided")

        if date_from and not date_to:
            eventDate = "{}".format(date_from)
    # Check if date to is compatible (ISO compliant)
    if date_to:
        try:
            parse(date_to)
        except:
            grass.fatal("Invalid invalid end date provided")
        # Check if date to is after date_from
        if parse(date_from) < parse(date_to):
            eventDate = "{},{}".format(date_from, date_to)
        else:
            grass.fatal(
                "Invalid date range: End date has to be after start date!")
    # Set filter on basisOfRecord if requested by user
    if basisofrecord == "ALL":
        basisOfRecord = None
    else:
        basisOfRecord = basisofrecord
    # Allow also occurrences with spatial issues if requested by user
    hasGeospatialIssue = False
    if hasGeoIssue:
        hasGeospatialIssue = True
    # Allow also occurrences without coordinates if requested by user
    hasCoordinate = True
    if allow_no_geom:
        hasCoordinate = False

    # Set reprojection parameters
    # Set target projection of current LOCATION
    proj_info = grass.parse_command("g.proj", flags="g")
    target_crs = grass.read_command("g.proj", flags="fj").rstrip()
    target = osr.SpatialReference()

    # Prefer EPSG CRS definitions
    if proj_info["epsg"]:
        target.ImportFromEPSG(int(proj_info["epsg"]))
    else:
        target.ImportFromProj4(target_crs)

    # GDAL >= 3 swaps x and y axis, see: github.com/gdal/issues/1546
    if int(gdal_version[0]) >= 3:
        target.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER)

    if target_crs == "XY location (unprojected)":
        grass.fatal("Sorry, XY locations are not supported!")

    # Set source projection from GBIF
    source = osr.SpatialReference()
    source.ImportFromEPSG(4326)
    # GDAL >= 3 swaps x and y axis, see: github.com/gdal/issues/1546
    if int(gdal_version[0]) >= 3:
        source.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER)

    if target_crs not in latlon_crs:
        transform = osr.CoordinateTransformation(source, target)
        reverse_transform = osr.CoordinateTransformation(target, source)

    # Generate WKT polygon to use for spatial filtering if requested
    if mask:
        if len(mask.split("@")) == 2:
            m = VectorTopo(mask.split("@")[0], mapset=mask.split("@")[1])
        else:
            m = VectorTopo(mask)
        if not m.exist():
            grass.fatal("Could not find vector map <{}>".format(mask))
        m.open("r")
        if not m.is_open():
            grass.fatal("Could not open vector map <{}>".format(mask))

        # Use map Bbox as spatial filter if map contains <> 1 area
        if m.number_of("areas") == 1:
            region_pol = [area.to_wkt() for area in m.viter("areas")][0]
        else:
            bbox = (str(m.bbox()).replace("Bbox(", "").replace(
                " ", "").rstrip(")").split(","))
            region_pol = "POLYGON (({0} {1}, {0} {3}, {2} {3}, {2} {1}, {0} {1}))".format(
                bbox[2], bbox[0], bbox[3], bbox[1])
        m.close()
    else:
        # Do not limit import spatially if LOCATION is able to take global data
        if no_region_limit:
            if target_crs not in latlon_crs:
                grass.fatal("Import of data from outside the current region is"
                            "only supported in a WGS84 location!")
            region_pol = None
        else:
            # Limit import spatially to current region
            # if LOCATION is !NOT! able to take global data
            # to avoid pprojection ERRORS
            region = grass.parse_command("g.region", flags="g")
            region_pol = "POLYGON (({0} {1},{0} {3},{2} {3},{2} {1},{0} {1}))".format(
                region["e"], region["n"], region["w"], region["s"])

    # Do not reproject in latlon LOCATIONS
    if target_crs not in latlon_crs:
        pol = ogr.CreateGeometryFromWkt(region_pol)
        pol.Transform(reverse_transform)
        pol = pol.ExportToWkt()
    else:
        pol = region_pol

    # Create output map if not output maps for each species are requested
    if (not species_maps and not print_species and not print_species_shell
            and not print_occ_number and not print_species_table):
        mapname = output
        new = Vector(mapname)
        new.open("w", tab_name=mapname, tab_cols=cols)
        cat = 1

    # Import data for each species
    for s in taxa_list:
        # Get the taxon key if not the taxon key is provided as input
        try:
            key = int(s)
        except:
            try:
                species_match = species.name_backbone(s,
                                                      rank=rank,
                                                      strict=False,
                                                      verbose=True)
                key = species_match["usageKey"]
            except:
                grass.error(
                    "Data request for taxon {} failed. Are you online?".format(
                        s))
                continue

        # Return matching taxon and alternatives and exit
        if print_species:
            print("Matching taxon for {} is:".format(s))
            print("{} {}".format(species_match["scientificName"],
                                 species_match["status"]))
            if "alternatives" in list(species_match.keys()):
                print("Alternative matches might be: {}".format(s))
                for m in species_match["alternatives"]:
                    print("{} {}".format(m["scientificName"], m["status"]))
            else:
                print("No alternatives found for the given taxon")
            continue
        if print_species_shell:
            print("match={}".format(species_match["scientificName"]))
            if "alternatives" in list(species_match.keys()):
                alternatives = []
                for m in species_match["alternatives"]:
                    alternatives.append(m["scientificName"])
                print("alternatives={}".format(",".join(alternatives)))
            continue
        if print_species_table:
            if "alternatives" in list(species_match.keys()):
                if len(species_match["alternatives"]) == 0:
                    print("{0}|{1}|{2}|".format(
                        s, key, species_match["scientificName"]))
                else:
                    alternatives = []
                    for m in species_match["alternatives"]:
                        alternatives.append(m["scientificName"])
                    print("{0}|{1}|{2}|{3}".format(
                        s,
                        key,
                        species_match["scientificName"],
                        ",".join(alternatives),
                    ))
            continue
        try:
            returns_n = occurrences.search(
                taxonKey=key,
                hasGeospatialIssue=hasGeospatialIssue,
                hasCoordinate=hasCoordinate,
                institutionCode=institutionCode,
                basisOfRecord=basisOfRecord,
                recordedBy=recordedby,
                eventDate=eventDate,
                continent=continent,
                country=country,
                geometry=pol,
                limit=1,
            )["count"]
        except:
            grass.error(
                "Data request for taxon {} faild. Are you online?".format(s))
            returns_n = 0

        # Exit if search does not give a return
        # Print only number of returns for the given search and exit
        if print_occ_number:
            print("Found {0} occurrences for taxon {1}...".format(
                returns_n, s))
            continue
        elif returns_n <= 0:
            grass.warning(
                "No occurrences for current search for taxon {0}...".format(s))
            continue
        elif returns_n >= 200000:
            grass.warning(
                "Your search for {1} returns {0} records.\n"
                "Unfortunately, the GBIF search API is limited to 200,000 records per request.\n"
                "The download will be incomplete. Please consider to split up your search."
                .format(returns_n, s))

        # Get the number of chunks to download
        chunks = int(math.ceil(returns_n / float(chunk_size)))
        grass.verbose("Downloading {0} occurrences for taxon {1}...".format(
            returns_n, s))

        # Create a map for each species if requested using map name as suffix
        if species_maps:
            mapname = "{}_{}".format(s.replace(" ", "_"), output)

            new = Vector(mapname)
            new.open("w", tab_name=mapname, tab_cols=cols)
            cat = 0

        # Download the data from GBIF
        for c in range(chunks):
            # Define offset
            offset = c * chunk_size
            # Adjust chunk_size to the hard limit of 200,000 records in GBIF API
            # if necessary
            if offset + chunk_size >= 200000:
                chunk_size = 200000 - offset
            # Get the returns for the next chunk
            returns = occurrences.search(
                taxonKey=key,
                hasGeospatialIssue=hasGeospatialIssue,
                hasCoordinate=hasCoordinate,
                institutionCode=institutionCode,
                basisOfRecord=basisOfRecord,
                recordedBy=recordedby,
                eventDate=eventDate,
                continent=continent,
                country=country,
                geometry=pol,
                limit=chunk_size,
                offset=offset,
            )

            # Write the returned data to map and attribute table
            for res in returns["results"]:
                if target_crs not in latlon_crs:
                    point = ogr.CreateGeometryFromWkt("POINT ({} {})".format(
                        res["decimalLongitude"], res["decimalLatitude"]))
                    point.Transform(transform)
                    x = point.GetX()
                    y = point.GetY()
                else:
                    x = res["decimalLongitude"]
                    y = res["decimalLatitude"]

                point = Point(x, y)

                for k in dwc_keys:
                    if k not in list(res.keys()):
                        res.update({k: None})

                cat = cat + 1
                new.write(
                    point,
                    cat=cat,
                    attrs=(
                        "{}".format(s),
                        res["key"],
                        res["taxonRank"],
                        res["taxonKey"],
                        res["taxonID"],
                        res["scientificName"],
                        res["species"],
                        res["speciesKey"],
                        res["genericName"],
                        res["genus"],
                        res["genusKey"],
                        res["family"],
                        res["familyKey"],
                        res["order"],
                        res["orderKey"],
                        res["class"],
                        res["classKey"],
                        res["phylum"],
                        res["phylumKey"],
                        res["kingdom"],
                        res["kingdomKey"],
                        "{}".format(res["eventDate"])
                        if res["eventDate"] else None,
                        "{}".format(res["verbatimEventDate"])
                        if res["verbatimEventDate"] else None,
                        res["startDayOfYear"],
                        res["endDayOfYear"],
                        res["year"],
                        res["month"],
                        res["day"],
                        res["occurrenceID"],
                        res["occurrenceStatus"],
                        res["occurrenceRemarks"],
                        res["Habitat"],
                        res["basisOfRecord"],
                        res["preparations"],
                        res["sex"],
                        res["type"],
                        res["locality"],
                        res["verbatimLocality"],
                        res["decimalLongitude"],
                        res["decimalLatitude"],
                        res["coordinateUncertaintyInMeters"],
                        res["geodeticDatum"],
                        res["higerGeography"],
                        res["continent"],
                        res["country"],
                        res["countryCode"],
                        res["stateProvince"],
                        res["gbifID"],
                        res["protocol"],
                        res["identifier"],
                        res["recordedBy"],
                        res["identificationID"],
                        ",".join(res["identifiers"]),
                        "{}".format(res["dateIdentified"])
                        if res["dateIdentified"] else None,
                        "{}".format(res["modified"])
                        if res["modified"] else None,
                        res["institutionCode"],
                        "{}".format(res["lastInterpreted"])
                        if res["lastInterpreted"] else None,
                        "{}".format(res["lastParsed"])
                        if res["lastParsed"] else None,
                        res["references"],
                        ",".join(res["relations"]),
                        res["catalogNumber"],
                        "{}".format(res["occurrenceDetails"])
                        if res["occurrenceDetails"] else None,
                        res["datasetKey"],
                        res["datasetName"],
                        res["collectionCode"],
                        res["rights"],
                        res["rightsHolder"],
                        res["license"],
                        res["publishingOrgKey"],
                        res["publishingCountry"],
                        "{}".format(res["lastCrawled"])
                        if res["lastCrawled"] else None,
                        res["specificEpithet"],
                        ",".join(res["facts"]),
                        ",".join(res["issues"]),
                        ",".join(res["extensions"]),
                        res["language"],
                    ),
                )

                cat = cat + 1

        # Close the current map if a map for each species is requested
        if species_maps:
            new.table.conn.commit()
            new.close()
            if not no_topo:
                grass.run_command("v.build", map=mapname, option="build")

            # Write history to map
            grass.vector_history(mapname)

    # Close the output map if not a map for each species is requested
    if (not species_maps and not print_species and not print_species_shell
            and not print_occ_number and not print_species_table):
        new.table.conn.commit()
        new.close()
        if not no_topo:
            grass.run_command("v.build", map=mapname, option="build")

        # Write history to map
        grass.vector_history(mapname)
예제 #19
0
def main(opt, flg):
    # import functions which depend on sklearn only after parser run
    from ml_functions import (
        balance,
        explorer_clsfiers,
        run_classifier,
        optimize_training,
        explore_SVC,
        plot_grid,
    )
    from features import importances, tocsv

    msgr = get_msgr()
    indexes = None
    vect = opt["vector"]
    vtraining = opt["vtraining"] if opt["vtraining"] else None
    scaler, decmp = None, None
    vlayer = opt["vlayer"] if opt["vlayer"] else vect + "_stats"
    tlayer = opt["tlayer"] if opt["tlayer"] else vect + "_training"
    rlayer = opt["rlayer"] if opt["rlayer"] else vect + "_results"

    labels = extract_classes(vtraining, 1)
    pprint(labels)

    if opt["scalar"]:
        scapar = opt["scalar"].split(",")
        from sklearn.preprocessing import StandardScaler

        scaler = StandardScaler(with_mean="with_mean" in scapar,
                                with_std="with_std" in scapar)

    if opt["decomposition"]:
        dec, params = (opt["decomposition"].split("|") if "|"
                       in opt["decomposition"] else (opt["decomposition"], ""))
        kwargs = ({k: v
                   for k, v in (p.split("=")
                                for p in params.split(","))} if params else {})
        load_decompositions()
        decmp = DECMP[dec](**kwargs)

    # if training extract training
    if vtraining and flg["e"]:
        msgr.message("Extract training from: <%s> to <%s>." %
                     (vtraining, vect))
        extract_training(vect, vtraining, tlayer)
        flg["n"] = True

    if flg["n"]:
        msgr.message("Save arrays to npy files.")
        save2npy(
            vect,
            vlayer,
            tlayer,
            fcats=opt["npy_cats"],
            fcols=opt["npy_cols"],
            fdata=opt["npy_data"],
            findx=opt["npy_index"],
            fclss=opt["npy_tclasses"],
            ftdata=opt["npy_tdata"],
        )

    # define the classifiers to use/test
    if opt["pyclassifiers"] and opt["pyvar"]:
        # import classifiers to use
        mycls = SourceFileLoader("mycls", opt["pyclassifiers"]).load_module()
        classifiers = getattr(mycls, opt["pyvar"])
    else:
        from ml_classifiers import CLASSIFIERS

        classifiers = CLASSIFIERS

    # Append the SVC classifier
    if opt["svc_c"] and opt["svc_gamma"]:
        from sklearn.svm import SVC

        svc = {
            "name": "SVC",
            "classifier": SVC,
            "kwargs": {
                "C": float(opt["svc_c"]),
                "gamma": float(opt["svc_gamma"]),
                "kernel": opt["svc_kernel"],
            },
        }
        classifiers.append(svc)

    # extract classifiers from pyindx
    if opt["pyindx"]:
        indexes = [i for i in get_indexes(opt["pyindx"])]
        classifiers = [classifiers[i] for i in indexes]

    num = int(opt["n_training"]) if opt["n_training"] else None

    # load fron npy files
    Xt = np.load(opt["npy_tdata"])
    Yt = np.load(opt["npy_tclasses"])
    cols = np.load(opt["npy_cols"])

    # Define rules to substitute NaN, Inf, posInf, negInf values
    rules = {}
    for key in ("nan", "inf", "neginf", "posinf"):
        if opt[key]:
            rules[key] = get_rules(opt[key])
    pprint(rules)

    # Substitute (skip cat column)
    Xt, rules_vals = substitute(Xt, rules, cols[1:])
    Xtoriginal = Xt

    # scale the data
    if scaler:
        msgr.message("Scaling the training data set.")
        scaler.fit(Xt, Yt)
        Xt = scaler.transform(Xt)

    # decompose data
    if decmp:
        msgr.message("Decomposing the training data set.")
        decmp.fit(Xt)
        Xt = decmp.transform(Xt)

    # Feature importances with forests of trees
    if flg["f"]:
        np.save("training_transformed.npy", Xt)
        importances(
            Xt,
            Yt,
            cols[1:],
            csv=opt["imp_csv"],
            img=opt["imp_fig"],
            # default parameters to save the matplotlib figure
            **dict(dpi=300, transparent=False, bbox_inches="tight"),
        )

    # optimize the training set
    if flg["o"]:
        ind_optimize = int(
            opt["pyindx_optimize"]) if opt["pyindx_optimize"] else 0
        cls = classifiers[ind_optimize]
        msgr.message("Find the optimum training set.")
        best, Xbt, Ybt = optimize_training(
            cls,
            Xt,
            Yt,
            labels,  # {v: k for k, v in labels.items()},
            scaler,
            decmp,
            num=num,
            maxiterations=1000,
        )
        msg = "    - save the optimum training data set to: %s."
        msgr.message(msg % opt["npy_btdata"])
        np.save(opt["npy_btdata"], Xbt)
        msg = "    - save the optimum training classes set to: %s."
        msgr.message(msg % opt["npy_btclasses"])
        np.save(opt["npy_btclasses"], Ybt)

    # balance the data
    if flg["b"]:
        msg = "Balancing the training data set, each class have <%d> samples."
        msgr.message(msg % num)
        Xbt, Ybt = balance(Xt, Yt, num)
    else:
        if not flg["o"]:
            Xbt = (np.load(opt["npy_btdata"])
                   if os.path.isfile(opt["npy_btdata"]) else Xt)
            Ybt = (np.load(opt["npy_btclasses"])
                   if os.path.isfile(opt["npy_btclasses"]) else Yt)

    # scale the data
    if scaler:
        msgr.message("Scaling the training data set.")
        scaler.fit(Xbt, Ybt)
        Xt = scaler.transform(Xt)
        Xbt = scaler.transform(Xbt)

    if flg["d"]:
        C_range = [float(c) for c in opt["svc_c_range"].split(",") if c]
        gamma_range = [
            float(g) for g in opt["svc_gamma_range"].split(",") if g
        ]
        kernel_range = [
            str(s) for s in opt["svc_kernel_range"].split(",") if s
        ]
        poly_range = [int(i) for i in opt["svc_poly_range"].split(",") if i]
        allkwargs = dict(C=C_range,
                         gamma=gamma_range,
                         kernel=kernel_range,
                         degree=poly_range)
        kwargs = {}
        for k in allkwargs:
            if allkwargs[k]:
                kwargs[k] = allkwargs[k]
        msgr.message("Exploring the SVC domain.")
        grid = explore_SVC(Xbt,
                           Ybt,
                           n_folds=5,
                           n_jobs=int(opt["svc_n_jobs"]),
                           **kwargs)
        import pickle

        krnlstr = "_".join(s for s in opt["svc_kernel_range"].split(",") if s)
        pkl = open("grid%s.pkl" % krnlstr, "w")
        pickle.dump(grid, pkl)
        pkl.close()
        #        pkl = open('grid.pkl', 'r')
        #        grid = pickle.load(pkl)
        #        pkl.close()
        plot_grid(grid, save=opt["svc_img"])

    # test the accuracy of different classifiers
    if flg["t"]:
        # test different classifiers
        msgr.message("Exploring different classifiers.")
        msgr.message("cls_id   cls_name          mean     max     min     std")

        res = explorer_clsfiers(
            classifiers,
            Xt,
            Yt,
            labels=labels,
            indexes=indexes,
            n_folds=5,
            bv=flg["v"],
            extra=flg["x"],
        )
        # TODO: sort(order=...) is working only in the terminal, why?
        # res.sort(order='mean')
        with open(opt["csv_test_cls"], "w") as csv:
            csv.write(tocsv(res))

    if flg["c"]:
        # classify
        data = np.load(opt["npy_data"])
        indx = np.load(opt["npy_index"])

        # Substitute using column values
        data, dummy = substitute(data, rules, cols[1:])
        Xt = data[indx]

        if scaler:
            msgr.message("Scaling the training data set.")
            scaler.fit(Xt, Yt)
            Xt = scaler.transform(Xt)
            msgr.message("Scaling the whole data set.")
            data = scaler.transform(data)
        if decmp:
            msgr.message("Decomposing the training data set.")
            decmp.fit(Xt)
            Xt = decmp.transform(Xt)
            msgr.message("Decompose the whole data set.")
            data = decmp.transform(data)
        cats = np.load(opt["npy_cats"])

        np.save("data_filled_scaled.npy", data)
        tcols = []
        for cls in classifiers:
            report = (open(opt["report_class"], "w")
                      if opt["report_class"] else sys.stdout)
            run_classifier(cls, Xt, Yt, Xt, Yt, labels, data, report=report)
            tcols.append((cls["name"], "INTEGER"))

        import pickle

        with open("classification_results.pkl", "w") as res:
            pickle.dump(classifiers, res)
        # classifiers = pickle.load(res)
        msgr.message("Export the results to layer: <%s>" % str(rlayer))
        export_results(
            vect,
            classifiers,
            cats,
            rlayer,
            vtraining,
            tcols,
            overwrite(),
            pkl="res.pkl",
            append=flg["a"],
        )
    #        res.close()

    if flg["r"]:
        rules = ("\n".join([
            "%d %s" % (k, v) for k, v in get_colors(vtraining).items()
        ]) if vtraining else None)

        msgr.message("Export the layer with results to raster")
        with Vector(vect, mode="r") as vct:
            tab = vct.dblinks.by_name(rlayer).table()
            rasters = [c for c in tab.columns]
            rasters.remove(tab.key)

        v2rst = Module("v.to.rast")
        rclrs = Module("r.colors")
        for rst in rasters:
            v2rst(
                input=vect,
                layer=rlayer,
                type="area",
                use="attr",
                attrcolumn=rst.encode(),
                output=(opt["rst_names"] % rst).encode(),
                memory=1000,
                overwrite=overwrite(),
            )
            if rules:
                rclrs(map=rst.encode(), rules="-", stdin_=rules)
예제 #20
0
def get_colors(vtraining):
    vect, mset = vtraining.split('@') if '@' in vtraining else (vtraining, '')
    with Vector(vect, mapset=mset, mode='r') as vct:
        cur = vct.table.execute('SELECT cat, color FROM %s;' % vct.name)
        return dict([c for c in cur.fetchall()])
예제 #21
0
area0s_list = list(area0s)
sorted_cats_by_area = [cats_list for (area0s_list,cats_list) in sorted(zip(area0s_list,cats_list))]

from grass.pygrass.vector import Vector, VectorTopo
streams = Vector('streams')
streamsTopo = VectorTopo('streams')
# to get list of lines:
# streamsTopo.open(mode='r')
# streamsTopo.next()
streamsTopo.open()
"""

# THIS IS HOW YOU UPDATE A TABLE!!!!
v.db_addcolumn(map='streams', columns='stream_number_ascending int')
#streams.table.columns.add('stream_number_ascending','int')
streams = Vector('streams')
streams.open('rw')
cur = streams.table.conn.cursor()
for i in range(len(sorted_new_river_numbers)):
    print i
    cur.execute("update streams set stream_number_ascending=" +
                str(river_numbers[i]) + " where cat=" + str(cats_list[i]))
streams.table.conn.commit()
streams.build()

# Should overwrite river_numbers, eventually
colNames = np.array(vector_db_select('streams')['columns'])
colValues = np.array(vector_db_select('streams')['values'].values())
river_numbers = colValues[:, colNames == 'stream_number_ascending'].astype(
    int).squeeze()
# Could also just use our river_numbers vector from before
예제 #22
0
def main(opt, flg):
    # import functions which depend on sklearn only after parser run
    from ml_functions import (balance, explorer_clsfiers, run_classifier,
                          optimize_training, explore_SVC, plot_grid)
    from features import importances, tocsv

    msgr = get_msgr()
    indexes = None
    vect = opt['vector']
    vtraining = opt['vtraining'] if opt['vtraining'] else None
    scaler, decmp = None, None
    vlayer = opt['vlayer'] if opt['vlayer'] else vect + '_stats'
    tlayer = opt['tlayer'] if opt['tlayer'] else vect + '_training'
    rlayer = opt['rlayer'] if opt['rlayer'] else vect + '_results'

    labels = extract_classes(vtraining, 1)
    pprint(labels)

    if opt['scalar']:
        scapar = opt['scalar'].split(',')
        from sklearn.preprocessing import StandardScaler
        scaler = StandardScaler(with_mean='with_mean' in scapar,
                                with_std='with_std' in scapar)

    if opt['decomposition']:
        dec, params = (opt['decomposition'].split('|')
                       if '|' in opt['decomposition']
                       else (opt['decomposition'], ''))
        kwargs = ({k: v for k, v in (p.split('=') for p in params.split(','))}
                  if params else {})
        load_decompositions()
        decmp = DECMP[dec](**kwargs)

    # if training extract training
    if vtraining and flg['e']:
        msgr.message("Extract training from: <%s> to <%s>." % (vtraining, vect))
        extract_training(vect, vtraining, tlayer)
        flg['n'] = True

    if flg['n']:
        msgr.message("Save arrays to npy files.")
        save2npy(vect, vlayer, tlayer,
                 fcats=opt['npy_cats'], fcols=opt['npy_cols'],
                 fdata=opt['npy_data'], findx=opt['npy_index'],
                 fclss=opt['npy_tclasses'], ftdata=opt['npy_tdata'])

    # define the classifiers to use/test
    if opt['pyclassifiers'] and opt['pyvar']:
        # import classifiers to use
        mycls = imp.load_source("mycls", opt['pyclassifiers'])
        classifiers = getattr(mycls, opt['pyvar'])
    else:
        from ml_classifiers import CLASSIFIERS
        classifiers = CLASSIFIERS

    # Append the SVC classifier
    if opt['svc_c'] and opt['svc_gamma']:
            from sklearn.svm import SVC
            svc = {'name': 'SVC', 'classifier': SVC,
                   'kwargs': {'C': float(opt['svc_c']),
                              'gamma': float(opt['svc_gamma']),
                              'kernel': opt['svc_kernel']}}
            classifiers.append(svc)

    # extract classifiers from pyindx
    if opt['pyindx']:
        indexes = [i for i in get_indexes(opt['pyindx'])]
        classifiers = [classifiers[i] for i in indexes]

    num = int(opt['n_training']) if opt['n_training'] else None

    # load fron npy files
    Xt = np.load(opt['npy_tdata'])
    Yt = np.load(opt['npy_tclasses'])
    cols = np.load(opt['npy_cols'])

    # Define rules to substitute NaN, Inf, posInf, negInf values
    rules = {}
    for key in ('nan', 'inf', 'neginf', 'posinf'):
        if opt[key]:
            rules[key] = get_rules(opt[key])
    pprint(rules)

    # Substitute (skip cat column)
    Xt, rules_vals = substitute(Xt, rules, cols[1:])
    Xtoriginal = Xt

    # scale the data
    if scaler:
        msgr.message("Scaling the training data set.")
        scaler.fit(Xt, Yt)
        Xt = scaler.transform(Xt)

    # decompose data
    if decmp:
        msgr.message("Decomposing the training data set.")
        decmp.fit(Xt)
        Xt = decmp.transform(Xt)

    # Feature importances with forests of trees
    if flg['f']:
        np.save('training_transformed.npy', Xt)
        importances(Xt, Yt, cols[1:],
                    csv=opt['imp_csv'], img=opt['imp_fig'],
                    # default parameters to save the matplotlib figure
                    **dict(dpi=300, transparent=False, bbox_inches='tight'))

    # optimize the training set
    if flg['o']:
        ind_optimize = (int(opt['pyindx_optimize']) if opt['pyindx_optimize']
                        else 0)
        cls = classifiers[ind_optimize]
        msgr.message("Find the optimum training set.")
        best, Xbt, Ybt = optimize_training(cls, Xt, Yt,
                                           labels, #{v: k for k, v in labels.items()},
                                           scaler, decmp,
                                           num=num, maxiterations=1000)
        msg = "    - save the optimum training data set to: %s."
        msgr.message(msg % opt['npy_btdata'])
        np.save(opt['npy_btdata'], Xbt)
        msg = "    - save the optimum training classes set to: %s."
        msgr.message(msg % opt['npy_btclasses'])
        np.save(opt['npy_btclasses'], Ybt)

    # balance the data
    if flg['b']:
        msg = "Balancing the training data set, each class have <%d> samples."
        msgr.message(msg % num)
        Xbt, Ybt = balance(Xt, Yt, num)
    else:
        if not flg['o']:
            Xbt = (np.load(opt['npy_btdata'])
                   if os.path.isfile(opt['npy_btdata']) else Xt)
            Ybt = (np.load(opt['npy_btclasses'])
                   if os.path.isfile(opt['npy_btclasses']) else Yt)

    # scale the data
    if scaler:
        msgr.message("Scaling the training data set.")
        scaler.fit(Xbt, Ybt)
        Xt = scaler.transform(Xt)
        Xbt = scaler.transform(Xbt)

    if flg['d']:
        C_range = [float(c) for c in opt['svc_c_range'].split(',') if c]
        gamma_range = [float(g) for g in opt['svc_gamma_range'].split(',') if g]
        kernel_range = [str(s) for s in opt['svc_kernel_range'].split(',') if s]
        poly_range = [int(i) for i in opt['svc_poly_range'].split(',') if i]
        allkwargs = dict(C=C_range, gamma=gamma_range,
                         kernel=kernel_range, degree=poly_range)
        kwargs = {}
        for k in allkwargs:
            if allkwargs[k]:
                kwargs[k] = allkwargs[k]
        msgr.message("Exploring the SVC domain.")
        grid = explore_SVC(Xbt, Ybt, n_folds=5, n_jobs=int(opt['svc_n_jobs']),
                           **kwargs)
        import pickle
        krnlstr = '_'.join(s for s in opt['svc_kernel_range'].split(',') if s)
        pkl = open('grid%s.pkl' % krnlstr, 'w')
        pickle.dump(grid, pkl)
        pkl.close()
#        pkl = open('grid.pkl', 'r')
#        grid = pickle.load(pkl)
#        pkl.close()
        plot_grid(grid, save=opt['svc_img'])

    # test the accuracy of different classifiers
    if flg['t']:
        # test different classifiers
        msgr.message("Exploring different classifiers.")
        msgr.message("cls_id   cls_name          mean     max     min     std")

        res = explorer_clsfiers(classifiers, Xt, Yt, labels=labels,
                                indexes=indexes, n_folds=5,
                                bv=flg['v'], extra=flg['x'])
        # TODO: sort(order=...) is working only in the terminal, why?
        #res.sort(order='mean')
        with open(opt['csv_test_cls'], 'w') as csv:
            csv.write(tocsv(res))

    if flg['c']:
        # classify
        data = np.load(opt['npy_data'])
        indx = np.load(opt['npy_index'])

        # Substitute using column values
        data, dummy = substitute(data, rules, cols[1:])
        Xt = data[indx]

        if scaler:
            msgr.message("Scaling the training data set.")
            scaler.fit(Xt, Yt)
            Xt = scaler.transform(Xt)
            msgr.message("Scaling the whole data set.")
            data = scaler.transform(data)
        if decmp:
            msgr.message("Decomposing the training data set.")
            decmp.fit(Xt)
            Xt = decmp.transform(Xt)
            msgr.message("Decompose the whole data set.")
            data = decmp.transform(data)
        cats = np.load(opt['npy_cats'])

        np.save('data_filled_scaled.npy', data)
        tcols = []
        for cls in classifiers:
            report = (open(opt['report_class'], "w")
                      if opt['report_class'] else sys.stdout)
            run_classifier(cls, Xt, Yt, Xt, Yt, labels, data,
                           report=report)
            tcols.append((cls['name'], 'INTEGER'))

        import pickle
        with open('classification_results.pkl', 'w') as res:
              pickle.dump(classifiers, res)
        #classifiers = pickle.load(res)
        msgr.message("Export the results to layer: <%s>" % str(rlayer))
        export_results(vect, classifiers, cats, rlayer, vtraining, tcols,
                       overwrite(), pkl='res.pkl', append=flg['a'])
#        res.close()

    if flg['r']:
        rules = ('\n'.join(['%d %s' % (k, v)
                            for k, v in get_colors(vtraining).items()])
                 if vtraining else None)

        msgr.message("Export the layer with results to raster")
        with Vector(vect, mode='r') as vct:
            tab = vct.dblinks.by_name(rlayer).table()
            rasters = [c for c in tab.columns]
            rasters.remove(tab.key)

        v2rst = Module('v.to.rast')
        rclrs = Module('r.colors')
        for rst in rasters:
            v2rst(input=vect, layer=rlayer, type='area',
                  use='attr', attrcolumn=rst.encode(),
                  output=(opt['rst_names'] % rst).encode(),
                  memory=1000, overwrite=overwrite())
            if rules:
                rclrs(map=rst.encode(), rules='-', stdin_=rules)
예제 #23
0
#!/usr/bin/env python3

from grass.pygrass.raster import RasterRow
from grass.pygrass.vector import Vector
from grass.pygrass.gis.region import Region
from grass.pygrass.utils import coor2pixel

name = 'dmt@PERMANENT'

reg = Region()
reg.from_rast(name)
reg.set_current()

dmt = RasterRow(name)
dmt.open('r')

obce = Vector('obce_bod')
obce.open('r')

for o in obce:
    x, y = coor2pixel(o.coords(), region)
    value = dmt[int(x)][int(y)]
    print ('{:40}: {:.0f}'.format(o.attrs['nazev'], value))

obce.close()
dmt.close()