def test_assign_row(A, v): result = Matrix.new_from_values([3, 3, 5, 6, 6, 1, 6, 2, 4, 1, 0, 0, 0, 0], [0, 2, 2, 2, 3, 4, 4, 5, 5, 6, 1, 3, 4, 6], [3, 3, 1, 5, 7, 8, 3, 1, 7, 4, 1, 1, 2, 0]) C = Matrix.new_from_existing(A) C.assign[0, :] = v assert C == result
def test_assign_column(A, v): result = Matrix.new_from_values( [3, 3, 5, 6, 0, 6, 1, 6, 2, 4, 1, 1, 3, 4, 6], [0, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 1, 1, 1, 1], [3, 3, 1, 5, 3, 7, 8, 3, 1, 7, 4, 1, 1, 2, 0]) C = Matrix.new_from_existing(A) C.assign[:, 1] = v assert C == result
def test_transpose(A): # C[:] = A.T rows, cols, vals = A.to_values() result = Matrix.new_from_values(cols, rows, vals) C = Matrix.new_from_type(A.dtype, A.ncols, A.nrows) C[:] = A.T assert C == result C2 = A.T.new() assert C2 == result
def test_assign_scalar(A): # Test block result_block = Matrix.new_from_values( [3, 0, 6, 0, 6, 6, 2, 4, 1, 1, 3, 5, 1, 3, 5], [0, 1, 2, 3, 3, 4, 5, 5, 6, 2, 2, 2, 4, 4, 4], [3, 2, 5, 3, 7, 3, 1, 7, 4, 0, 0, 0, 0, 0, 0]) C = Matrix.new_from_existing(A) C.assign[[1, 3, 5], [2, 4]] = 0 assert C == result_block C = Matrix.new_from_existing(A) C.assign[1::2, 2:5:2] = 0 assert C == result_block # Test row result_row = Matrix.new_from_values( [3, 0, 6, 0, 6, 6, 2, 4, 1, 3, 5, 1, 1], [0, 1, 2, 3, 3, 4, 5, 5, 6, 2, 2, 2, 4], [3, 2, 5, 3, 7, 3, 1, 7, 4, 3, 1, 0, 0]) C = Matrix.new_from_existing(A) C.assign[1, [2, 4]] = 0 assert C == result_row C = Matrix.new_from_existing(A) C.assign[1, 2:5:2] = 0 assert C == result_row # Test column result_column = Matrix.new_from_values( [3, 0, 6, 0, 6, 6, 2, 4, 1, 1, 1, 3, 5], [0, 1, 2, 3, 3, 4, 5, 5, 6, 4, 2, 2, 2], [3, 2, 5, 3, 7, 3, 1, 7, 4, 8, 0, 0, 0]) C = Matrix.new_from_existing(A) C.assign[[1, 3, 5], 2] = 0 assert C == result_column C = Matrix.new_from_existing(A) C.assign[1::2, 2] = 0 assert C == result_column
def test_assign(A): B = Matrix.new_from_values([0, 0, 1], [0, 1, 0], [9, 8, 7]) result = Matrix.new_from_values([0, 0, 2, 3, 0, 3, 5, 6, 0, 6, 1, 6, 4, 1], [0, 5, 0, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6], [9, 8, 7, 3, 2, 3, 1, 5, 3, 7, 8, 3, 7, 4]) C = Matrix.new_from_existing(A) C.assign[[0, 2], [0, 5]] = B assert C == result C = Matrix.new_from_existing(A) C.assign[:3:2, :6:5] = B assert C == result
def test_new_from_values_dtype_resolving(): data = [[0, 1, 2], [1, 2, 3]] u = Vector.new_from_values([0, 1, 2], [1, 2, 3], dtype=dtypes.INT32) assert u.dtype == 'INT32' u = Vector.new_from_values([0, 1, 2], [1, 2, 3], dtype='INT32') assert u.dtype == dtypes.INT32 M = Matrix.new_from_values([0, 1, 2], [2, 0, 1], [0, 2, 3], dtype=dtypes.UINT8) assert M.dtype == 'UINT8' M = Matrix.new_from_values([0, 1, 2], [2, 0, 1], [0, 2, 3], dtype=float) assert M.dtype == dtypes.FP64
def test_ewise_mult(A): # Binary, Monoid, and Semiring B = Matrix.new_from_values([0, 0, 5], [1, 2, 2], [5, 4, 8], nrows=7, ncols=7) result = Matrix.new_from_values([0, 5], [1, 2], [10, 8], nrows=7, ncols=7) C = A.ewise_mult(B, BinaryOp.TIMES).new() assert C == result C[:] = A.ewise_mult(B, Monoid.TIMES) assert C == result C[:] = A.ewise_mult(B, Semiring.PLUS_TIMES) assert C == result
def test_equal(A, v): assert A == A assert A != v C = Matrix.new_from_values([1], [1], [1]) assert C != A C2 = Matrix.new_from_values([1], [1], [1], nrows=7, ncols=7) assert C2 != A C3 = Matrix.new_from_values( [3, 0, 3, 5, 6, 0, 6, 1, 6, 2, 4, 1], [0, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6], [3., 2., 3., 1., 5., 3., 7., 8., 3., 1., 7., 4.]) assert C3 != A, 'different datatypes are not equal'
def test_extract(A): C = Matrix.new_from_type(A.dtype, 3, 4) result = Matrix.new_from_values([0, 0, 1, 2, 2, 2], [0, 2, 1, 1, 2, 3], [2, 3, 3, 5, 7, 3], nrows=3, ncols=4) C[:] = A.extract[[0, 3, 6], [1, 2, 3, 4]] assert C == result C[:] = A.extract[0::3, 1:5] assert C == result C[:] = A.extract[[0, 3, 6], 1:5:1] assert C == result C2 = A.extract[[0, 3, 6], [1, 2, 3, 4]].new() assert C2 == result
def test_mxm_transpose(A): C = Matrix.new_from_existing(A) C[:] = A.mxm(A.T, Semiring.PLUS_TIMES) result = Matrix.new_from_values( [0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6], [0, 6, 1, 6, 2, 4, 3, 5, 6, 2, 4, 3, 5, 6, 0, 1, 3, 5, 6], [13, 21, 80, 24, 1, 7, 18, 3, 15, 7, 49, 3, 1, 5, 21, 24, 15, 5, 83]) assert C == result C[:] = A.T.mxm(A, Semiring.PLUS_TIMES) result2 = Matrix.new_from_values( [0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6], [0, 2, 1, 3, 0, 2, 3, 4, 1, 2, 3, 4, 2, 3, 4, 6, 5, 4, 6], [9, 9, 4, 6, 9, 35, 35, 15, 6, 35, 58, 21, 15, 21, 73, 32, 50, 32, 16]) assert C == result2
def test_mxm_nonsquare(): A = Matrix.new_from_values([0, 0, 0], [0, 2, 4], [1, 2, 3], nrows=1, ncols=5) B = Matrix.new_from_values([0, 2, 4], [0, 0, 0], [10, 20, 30], nrows=5, ncols=1) C = Matrix.new_from_type(A.dtype, nrows=1, ncols=1) C[:] = A.mxm(B, Semiring.MAX_PLUS) assert C.element[0, 0] == 33 C1 = A.mxm(B, Semiring.MAX_PLUS).new() assert C1 == C C2 = A.T.mxm(B.T, Semiring.MAX_PLUS).new() assert C2.nrows == 5 assert C2.ncols == 5
def test_ewise_add(A): # Binary, Monoid, and Semiring B = Matrix.new_from_values([0, 0, 5], [1, 2, 2], [5, 4, 8], nrows=7, ncols=7) result = Matrix.new_from_values([0, 3, 0, 3, 5, 6, 0, 6, 1, 6, 2, 4, 1], [2, 0, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6], [4, 3, 5, 3, 8, 5, 3, 7, 8, 3, 1, 7, 4]) C = A.ewise_add(B, BinaryOp.SECOND).new( ) # possibly surprising, but SECOND(x, empty) == x assert C == result C[:] = A.ewise_add(B, Monoid.MAX) assert C == result C[:] = A.ewise_add(B, Semiring.MAX_MINUS) assert C == result
def test_mxm(A): C = A.mxm(A, Semiring.PLUS_TIMES).new() result = Matrix.new_from_values( [0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 6, 6, 6], [0, 2, 4, 6, 2, 3, 4, 5, 2, 1, 3, 5, 2, 5, 0, 2, 5], [9, 9, 16, 8, 20, 28, 12, 56, 1, 6, 9, 3, 7, 1, 21, 21, 26]) assert C == result
def test_apply(A): result = Matrix.new_from_values( [3, 0, 3, 5, 6, 0, 6, 1, 6, 2, 4, 1], [0, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6], [-3, -2, -3, -1, -5, -3, -7, -8, -3, -1, -7, -4]) C = A.apply(UnaryOp.AINV).new() assert C == result
def test_mxm_mask(A): mask = Matrix.new_from_values([0, 3, 4], [2, 3, 2], [True, True, True], nrows=7, ncols=7) C = Matrix.new_from_existing(A) C[mask] = A.mxm(A, Semiring.PLUS_TIMES) result = Matrix.new_from_values( [0, 0, 0, 1, 1, 2, 3, 3, 3, 4, 4, 5, 6, 6, 6], [1, 2, 3, 4, 6, 5, 0, 2, 3, 2, 5, 2, 2, 3, 4], [2, 9, 3, 8, 4, 1, 3, 3, 9, 7, 7, 1, 5, 7, 3]) assert C == result C = Matrix.new_from_existing(A) C[~mask] = A.mxm(A, Semiring.PLUS_TIMES) result2 = Matrix.new_from_values( [0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 5, 6, 6, 6], [0, 4, 6, 2, 3, 4, 5, 2, 1, 5, 5, 0, 2, 5], [9, 16, 8, 20, 28, 12, 56, 1, 6, 3, 1, 21, 21, 26]) assert C == result2 C = Matrix.new_from_existing(A) C[mask, REPLACE] = A.mxm(A, Semiring.PLUS_TIMES) result3 = Matrix.new_from_values([0, 3, 4], [2, 3, 2], [9, 9, 7], nrows=7, ncols=7) assert C == result3 C2 = A.mxm(A, Semiring.PLUS_TIMES).new(mask=mask) assert C2 == result3
def test_new_from_values(): C = Matrix.new_from_values([0, 1, 3], [1, 1, 2], [True, False, True]) assert C.nrows == 4 assert C.ncols == 3 assert C.nvals == 3 assert C.dtype == bool C2 = Matrix.new_from_values([0, 1, 3], [1, 1, 2], [12.3, 12.4, 12.5], nrows=17, ncols=3) assert C2.nrows == 17 assert C2.ncols == 3 assert C2.nvals == 3 assert C2.dtype == float C3 = Matrix.new_from_values([0, 1, 1], [2, 1, 1], [1, 2, 3], nrows=10, dup_op=BinaryOp.TIMES) assert C3.nrows == 10 assert C3.ncols == 3 assert C3.nvals == 2 # duplicates were combined assert C3.dtype == int assert C3.element[1, 1] == 6 # 2*3 with pytest.raises(ValueError): # Duplicate indices requires a dup_op Matrix.new_from_values([0, 1, 1], [2, 1, 1], [True, True, True]) with pytest.raises(IndexOutOfBound): # Specified ncols can't hold provided indexes Matrix.new_from_values([0, 1, 3], [1, 1, 2], [12.3, 12.4, 12.5], nrows=17, ncols=2)
def test_new_from_existing(A): C = Matrix.new_from_existing(A) assert C is not A assert C.dtype == A.dtype assert C.nvals == A.nvals assert C.nrows == A.nrows assert C.ncols == A.ncols # Ensure they are not the same backend object A.element[0, 0] = 1000 assert C.element[0, 0] != 1000
def test_vxm_nonsquare(v): A = Matrix.new_from_values([0, 3], [0, 1], [10, 20], nrows=7, ncols=2) u = Vector.new_from_type(v.dtype, size=2) u[:] = v.vxm(A, Semiring.MIN_PLUS) result = Vector.new_from_values([1], [21]) assert u == result w1 = v.vxm(A, Semiring.MIN_PLUS).new() assert w1 == u # Test the transpose case v2 = Vector.new_from_values([0, 1], [1, 2]) w2 = v2.vxm(A.T, Semiring.MIN_PLUS).new() assert w2.size == 7
def test_mxm_accum(A): A[BinaryOp.PLUS] = A.mxm(A, Semiring.PLUS_TIMES) result = Matrix.new_from_values([ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 6 ], [ 0, 1, 2, 3, 4, 6, 2, 3, 4, 5, 6, 2, 5, 0, 1, 2, 3, 5, 2, 5, 2, 5, 0, 2, 3, 4, 5 ], [ 9, 2, 9, 3, 16, 8, 20, 28, 20, 56, 4, 1, 1, 3, 6, 3, 9, 3, 7, 7, 1, 1, 21, 26, 7, 3, 26 ]) assert A == result
def test_semiring_udf(): def plus_plus_two(x, y): return x + y + 2 BinaryOp.register_new('plus_plus_two', plus_plus_two) Semiring.register_new('extra_twos', Monoid.PLUS, BinaryOp.plus_plus_two) v = Vector.new_from_values([0, 1, 3], [1, 2, -4], dtype=dtypes.INT32) A = Matrix.new_from_values([0, 0, 0, 0, 3, 3, 3, 3], [0, 1, 2, 3, 0, 1, 2, 3], [2, 3, 4, 5, 6, 7, 8, 9], dtype=dtypes.INT32) w = v.vxm(A, Semiring.extra_twos).new() result = Vector.new_from_values([0, 1, 2, 3], [9, 11, 13, 15], dtype=dtypes.INT32) assert w == result
def test_new_from_values_invalid_dtype(): with pytest.raises(OverflowError): Matrix.new_from_values([0, 1, 2], [2, 0, 1], [0, 2, 3], dtype=dtypes.BOOL)
def test_simple_assignment(A): # C[:] = A C = Matrix.new_from_type(A.dtype, A.nrows, A.ncols) C[:] = A assert C == A
def A(): data = [[3, 0, 3, 5, 6, 0, 6, 1, 6, 2, 4, 1], [0, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6], [3, 2, 3, 1, 5, 3, 7, 8, 3, 1, 7, 4]] return Matrix.new_from_values(*data)
def test_new_from_type(): C = Matrix.new_from_type(dtypes.INT8, 17, 12) assert C.dtype == 'INT8' assert C.nvals == 0 assert C.nrows == 17 assert C.ncols == 12
def test_assign_wrong_dims(A): B = Matrix.new_from_values([0, 0, 1], [0, 1, 0], [9, 8, 7]) with pytest.raises(DimensionMismatch): A.assign[[0, 2, 4], [0, 5]] = B