예제 #1
0
def _suite_scaffold(suite: str, directory: str, jupyter: bool) -> None:
    usage_event = "cli.suite.scaffold"
    suite_name = suite
    context = load_data_context_with_error_handling(directory)
    notebook_filename = f"scaffold_{suite_name}.ipynb"
    notebook_path = _get_notebook_path(context, notebook_filename)

    if suite_name in context.list_expectation_suite_names():
        toolkit.tell_user_suite_exists(suite_name)
        if os.path.isfile(notebook_path):
            cli_message(
                f"  - If you wish to adjust your scaffolding, you can open this notebook with jupyter: `{notebook_path}` <red>(Please note that if you run that notebook, you will overwrite your existing suite.)</red>"
            )
        send_usage_message(data_context=context, event=usage_event, success=False)
        sys.exit(1)

    datasource = toolkit.select_datasource(context)
    if datasource is None:
        send_usage_message(data_context=context, event=usage_event, success=False)
        sys.exit(1)

    _suite = context.create_expectation_suite(suite_name)
    _, _, _, batch_kwargs = get_batch_kwargs(context, datasource_name=datasource.name)
    renderer = SuiteScaffoldNotebookRenderer(context, _suite, batch_kwargs)
    renderer.render_to_disk(notebook_path)

    if jupyter:
        toolkit.launch_jupyter_notebook(notebook_path)
    else:
        cli_message(
            f"To continue scaffolding this suite, run `jupyter notebook {notebook_path}`"
        )

    send_usage_message(data_context=context, event=usage_event, success=True)
예제 #2
0
def tap_new(suite, tap_filename, directory, datasource=None):
    """BETA! Create a new tap file for easy deployments."""
    cli_message(
        "<yellow>This is a BETA feature which may change. If you have ideas please file a GitHub issue!</yellow>"
    )
    context = _get_context(directory)
    try:
        _validate_tap_filename(tap_filename)
        context_directory = context.root_directory
        datasource = _get_datasource(context, datasource)
        suite = load_expectation_suite(context, suite)
        _, _, _, batch_kwargs = get_batch_kwargs(context, datasource.name)

        tap_filename = _write_tap_file_to_disk(batch_kwargs, context_directory,
                                               suite, tap_filename)
        cli_message(f"""\
<green>A new tap has been generated!</green>
To run this tap, run: <green>python {tap_filename}</green>
You can edit this script or place this code snippet in your pipeline.""")
        send_usage_message(data_context=context,
                           event="cli.tap.new",
                           success=True)
    except Exception as e:
        send_usage_message(data_context=context,
                           event="cli.tap.new",
                           success=False)
        raise e
예제 #3
0
def tap_new(suite, tap_filename, directory, datasource=None):
    """Create a new tap file for easy deployments. (BETA)"""
    context = load_data_context_with_error_handling(directory)
    try:
        _validate_tap_filename(tap_filename)
        context_directory = context.root_directory
        datasource = _get_datasource(context, datasource)
        suite = load_expectation_suite(context, suite)
        _, _, _, batch_kwargs = get_batch_kwargs(context, datasource.name)

        tap_filename = _write_tap_file_to_disk(
            batch_kwargs, context_directory, suite, tap_filename
        )
        cli_message(
        f"""\
<green>A new tap has been generated!</green>
To run this tap, run: <green>python {tap_filename}</green>
You can edit this script or place this code snippet in your pipeline."""
        )
        send_usage_message(
            data_context=context,
            event="cli.tap.new",
            success=True
        )
    except Exception as e:
        send_usage_message(
            data_context=context,
            event="cli.tap.new",
            success=False
        )
        raise e
예제 #4
0
def _checkpoint_new(suite,
                    checkpoint_filename,
                    directory,
                    usage_event,
                    datasource=None):
    context = load_data_context_with_error_handling(directory)
    try:
        _validate_checkpoint_filename(checkpoint_filename)
        context_directory = context.root_directory
        datasource = _get_datasource(context, datasource)
        suite = load_expectation_suite(context, suite)
        _, _, _, batch_kwargs = get_batch_kwargs(context, datasource.name)

        checkpoint_filename = _write_tap_file_to_disk(batch_kwargs,
                                                      context_directory, suite,
                                                      checkpoint_filename)
        cli_message(f"""\
<green>A new checkpoint has been generated!</green>
To run this checkpoint, run: <green>python {checkpoint_filename}</green>
You can edit this script or place this code snippet in your pipeline.""")
        send_usage_message(data_context=context,
                           event=usage_event,
                           success=True)
    except Exception as e:
        send_usage_message(data_context=context,
                           event=usage_event,
                           success=False)
        raise e
def test_get_batch_kwargs_for_specific_dataasset(empty_data_context, filesystem_csv):
    project_root_dir = empty_data_context.root_directory
    context = DataContext(project_root_dir)
    base_directory = str(filesystem_csv)

    context.add_datasource(
        "wow_a_datasource",
        module_name="great_expectations.datasource",
        class_name="PandasDatasource",
        batch_kwargs_generators={
            "subdir_reader": {
                "class_name": "SubdirReaderBatchKwargsGenerator",
                "base_directory": base_directory,
            }
        },
    )

    batch = get_batch_kwargs(
        context,
        datasource_name=None,
        batch_kwargs_generator_name=None,
        data_asset_name="f1",
        additional_batch_kwargs={},
    )

    expected_batch = {
        "data_asset_name": "f1",
        "datasource": "wow_a_datasource",
        "path": os.path.join(filesystem_csv, "f1.csv"),
    }
    assert batch == expected_batch
def validation_operator_run(name, run_name, validation_config_file, suite,
                            directory):
    # Note though the long lines here aren't pythonic, they look best if Click does the line wraps.
    """
    Run a validation operator against some data.

    There are two modes to run this command:

    1. Interactive (good for development):

        Specify the name of the validation operator using the --name argument
        and the name of the expectation suite using the --suite argument.

        The cli will help you specify the batch of data that you want to
        validate interactively.


    2. Non-interactive (good for production):

        Use the `--validation_config_file` argument to specify the path of the validation configuration JSON file. This file can be used to instruct a validation operator to validate multiple batches of data and use multiple expectation suites to validate each batch.

        Learn how to create a validation config file here:
        https://great-expectations.readthedocs.io/en/latest/command_line.html#great-expectations-validation-operator-run-validation-config-file-validation-config-file-path

        This command exits with 0 if the validation operator ran and the "success" attribute in its return object is True. Otherwise, the command exits with 1.

    To learn more about validation operators, go here:
    https://great-expectations.readthedocs.io/en/latest/features/validation.html#validation-operators
    """

    try:
        context = DataContext(directory)
    except ge_exceptions.ConfigNotFoundError as err:
        cli_message("Failed to process <red>{}</red>".format(err.message))
        sys.exit(1)

    try:
        if validation_config_file is not None:
            try:
                with open(validation_config_file) as f:
                    validation_config = json.load(f)
            except (OSError, json_parse_exception) as e:
                cli_message(
                    f"Failed to process the --validation_config_file argument: <red>{e}</red>"
                )
                send_usage_message(
                    data_context=context,
                    event="cli.validation_operator.run",
                    success=False,
                )
                sys.exit(1)

            validation_config_error_message = _validate_valdiation_config(
                validation_config)
            if validation_config_error_message is not None:
                cli_message(
                    "<red>The validation config in {:s} is misconfigured: {:s}</red>"
                    .format(validation_config_file,
                            validation_config_error_message))
                send_usage_message(
                    data_context=context,
                    event="cli.validation_operator.run",
                    success=False,
                )
                sys.exit(1)

        else:
            if suite is None:
                cli_message("""
Please use --suite argument to specify the name of the expectation suite.
Call `great_expectation suite list` command to list the expectation suites in your project.
""")
                send_usage_message(
                    data_context=context,
                    event="cli.validation_operator.run",
                    success=False,
                )
                sys.exit(0)

            suite = toolkit.load_expectation_suite(
                context, suite, "cli.validation_operator.run")

            if name is None:
                cli_message("""
Please use --name argument to specify the name of the validation operator.
Call `great_expectation validation-operator list` command to list the operators in your project.
""")
                send_usage_message(
                    data_context=context,
                    event="cli.validation_operator.run",
                    success=False,
                )
                sys.exit(1)
            else:
                if name not in context.list_validation_operator_names():
                    cli_message(f"""
Could not find a validation operator {name}.
Call `great_expectation validation-operator list` command to list the operators in your project.
""")
                    send_usage_message(
                        data_context=context,
                        event="cli.validation_operator.run",
                        success=False,
                    )
                    sys.exit(1)

            batch_kwargs = None

            cli_message("""
Let us help you specify the batch of data your want the validation operator to validate."""
                        )

            try:
                data_source = toolkit.select_datasource(context)
            except ValueError as ve:
                cli_message("<red>{}</red>".format(ve))
                send_usage_message(
                    data_context=context,
                    event="cli.validation_operator.run",
                    success=False,
                )
                sys.exit(1)

            if not data_source:
                cli_message("<red>No datasources found in the context.</red>")
                send_usage_message(
                    data_context=context,
                    event="cli.validation_operator.run",
                    success=False,
                )
                sys.exit(1)

            if batch_kwargs is None:
                (
                    datasource_name,
                    batch_kwargs_generator,
                    data_asset,
                    batch_kwargs,
                ) = get_batch_kwargs(
                    context,
                    datasource_name=data_source.name,
                    batch_kwargs_generator_name=None,
                    data_asset_name=None,
                    additional_batch_kwargs=None,
                )

            validation_config = {
                "validation_operator_name":
                name,
                "batches": [{
                    "batch_kwargs":
                    batch_kwargs,
                    "expectation_suite_names": [suite.expectation_suite_name],
                }],
            }

        try:
            validation_operator_name = validation_config[
                "validation_operator_name"]
            batches_to_validate = []
            for entry in validation_config["batches"]:
                for expectation_suite_name in entry["expectation_suite_names"]:
                    batch = context.get_batch(entry["batch_kwargs"],
                                              expectation_suite_name)
                    batches_to_validate.append(batch)

            if run_name is None:
                run_name = datetime.datetime.now(
                    datetime.timezone.utc).strftime("%Y%m%dT%H%M%S.%fZ")

            run_id = RunIdentifier(run_name=run_name)

            if suite is None:
                results = context.run_validation_operator(
                    validation_operator_name,
                    assets_to_validate=batches_to_validate,
                    run_id=run_id,
                )
            else:
                if suite.evaluation_parameters is None:
                    results = context.run_validation_operator(
                        validation_operator_name,
                        assets_to_validate=batches_to_validate,
                        run_id=run_id,
                    )
                else:
                    results = context.run_validation_operator(
                        validation_operator_name,
                        assets_to_validate=batches_to_validate,
                        run_id=run_id,
                        evaluation_parameters=suite.evaluation_parameters,
                    )
        except (ge_exceptions.DataContextError, OSError, SQLAlchemyError) as e:
            cli_message("<red>{}</red>".format(e))
            send_usage_message(data_context=context,
                               event="cli.validation_operator.run",
                               success=False)
            sys.exit(1)

        if not results["success"]:
            cli_message("Validation failed!")
            send_usage_message(data_context=context,
                               event="cli.validation_operator.run",
                               success=True)
            sys.exit(1)
        else:
            cli_message("Validation succeeded!")
            send_usage_message(data_context=context,
                               event="cli.validation_operator.run",
                               success=True)
            sys.exit(0)
    except Exception as e:
        send_usage_message(data_context=context,
                           event="cli.validation_operator.run",
                           success=False)
        raise e
예제 #7
0
def _suite_edit(suite, datasource, directory, jupyter, batch_kwargs, usage_event):
    batch_kwargs_json = batch_kwargs
    batch_kwargs = None
    context = load_data_context_with_error_handling(directory)

    try:
        suite = load_expectation_suite(context, suite)
        citations = suite.get_citations(require_batch_kwargs=True)

        if batch_kwargs_json:
            try:
                batch_kwargs = json.loads(batch_kwargs_json)
                if datasource:
                    batch_kwargs["datasource"] = datasource
                _batch = toolkit.load_batch(context, suite, batch_kwargs)
            except json_parse_exception as je:
                cli_message(
                    "<red>Please check that your batch_kwargs are valid JSON.\n{}</red>".format(
                        je
                    )
                )
                send_usage_message(
                    data_context=context, event=usage_event, success=False
                )
                sys.exit(1)
            except ge_exceptions.DataContextError:
                cli_message(
                    "<red>Please check that your batch_kwargs are able to load a batch.</red>"
                )
                send_usage_message(
                    data_context=context, event=usage_event, success=False
                )
                sys.exit(1)
            except ValueError as ve:
                cli_message(
                    "<red>Please check that your batch_kwargs are able to load a batch.\n{}</red>".format(
                        ve
                    )
                )
                send_usage_message(
                    data_context=context, event=usage_event, success=False
                )
                sys.exit(1)
        elif citations:
            citation = citations[-1]
            batch_kwargs = citation.get("batch_kwargs")

        if not batch_kwargs:
            cli_message(
                """
A batch of data is required to edit the suite - let's help you to specify it."""
            )

            additional_batch_kwargs = None
            try:
                data_source = select_datasource(context, datasource_name=datasource)
            except ValueError as ve:
                cli_message("<red>{}</red>".format(ve))
                send_usage_message(
                    data_context=context, event=usage_event, success=False
                )
                sys.exit(1)

            if not data_source:
                cli_message("<red>No datasources found in the context.</red>")
                send_usage_message(
                    data_context=context, event=usage_event, success=False
                )
                sys.exit(1)

            if batch_kwargs is None:
                (
                    datasource_name,
                    batch_kwargs_generator,
                    data_asset,
                    batch_kwargs,
                ) = get_batch_kwargs(context, datasource_name=data_source.name,
                                     additional_batch_kwargs=additional_batch_kwargs)

        notebook_name = "edit_{}.ipynb".format(suite.expectation_suite_name)
        notebook_path = _get_notebook_path(context, notebook_name)
        SuiteEditNotebookRenderer().render_to_disk(suite, notebook_path, batch_kwargs)

        if not jupyter:
            cli_message(
                f"To continue editing this suite, run <green>jupyter notebook {notebook_path}</green>"
            )

        payload = edit_expectation_suite_usage_statistics(
            data_context=context, expectation_suite_name=suite.expectation_suite_name
        )

        send_usage_message(
            data_context=context, event=usage_event, event_payload=payload, success=True
        )

        if jupyter:
            toolkit.launch_jupyter_notebook(notebook_path)

    except Exception as e:
        send_usage_message(data_context=context, event=usage_event, success=False)
        raise e
예제 #8
0
def create_expectation_suite(
    context,
    datasource_name=None,
    batch_kwargs_generator_name=None,
    generator_asset=None,
    batch_kwargs=None,
    expectation_suite_name=None,
    additional_batch_kwargs=None,
    empty_suite=False,
    show_intro_message=False,
    open_docs=False,
    profiler_configuration="demo",
):
    """
    Create a new expectation suite.

    :return: a tuple: (success, suite name)
    """
    if show_intro_message and not empty_suite:
        cli_message(
            "\n<cyan>========== Create sample Expectations ==========</cyan>\n\n"
        )

    data_source = select_datasource(context, datasource_name=datasource_name)
    if data_source is None:
        # select_datasource takes care of displaying an error message, so all is left here is to exit.
        sys.exit(1)

    datasource_name = data_source.name

    if expectation_suite_name in context.list_expectation_suite_names():
        tell_user_suite_exists(expectation_suite_name)
        sys.exit(1)

    if (batch_kwargs_generator_name is None or generator_asset is None
            or batch_kwargs is None):
        (
            datasource_name,
            batch_kwargs_generator_name,
            generator_asset,
            batch_kwargs,
        ) = get_batch_kwargs(
            context,
            datasource_name=datasource_name,
            batch_kwargs_generator_name=batch_kwargs_generator_name,
            generator_asset=generator_asset,
            additional_batch_kwargs=additional_batch_kwargs,
        )
        # In this case, we have "consumed" the additional_batch_kwargs
        additional_batch_kwargs = {}

    if expectation_suite_name is None:
        default_expectation_suite_name = _get_default_expectation_suite_name(
            batch_kwargs, generator_asset)
        while True:
            expectation_suite_name = click.prompt(
                "\nName the new expectation suite",
                default=default_expectation_suite_name,
            )
            if expectation_suite_name in context.list_expectation_suite_names(
            ):
                tell_user_suite_exists(expectation_suite_name)
            else:
                break

    if empty_suite:
        create_empty_suite(context, expectation_suite_name, batch_kwargs)
        return True, expectation_suite_name

    profiling_results = _profile_to_create_a_suite(
        additional_batch_kwargs,
        batch_kwargs,
        batch_kwargs_generator_name,
        context,
        datasource_name,
        expectation_suite_name,
        generator_asset,
        profiler_configuration,
    )

    build_docs(context, view=False)
    if open_docs:
        _attempt_to_open_validation_results_in_data_docs(
            context, profiling_results)

    return True, expectation_suite_name
예제 #9
0
def create_expectation_suite(
    context,
    datasource_name=None,
    batch_kwargs_generator_name=None,
    generator_asset=None,
    batch_kwargs=None,
    expectation_suite_name=None,
    additional_batch_kwargs=None,
    empty_suite=False,
    show_intro_message=False,
    flag_build_docs=True,
    open_docs=False,
    profiler_configuration="demo",
    data_asset_name=None,
):
    """
    Create a new expectation suite.

    WARNING: the flow and name of this method and its interaction with _profile_to_create_a_suite
    require a serious revisiting.
    :return: a tuple: (success, suite name, profiling_results)
    """
    if generator_asset:
        warnings.warn(
            "The 'generator_asset' argument will be deprecated and renamed to 'data_asset_name'. "
            "Please update code accordingly.",
            DeprecationWarning,
        )
        data_asset_name = generator_asset

    if show_intro_message and not empty_suite:
        cli_message(
            "\n<cyan>========== Create sample Expectations ==========</cyan>\n\n"
        )

    data_source = select_datasource(context, datasource_name=datasource_name)

    if data_source is None:
        # select_datasource takes care of displaying an error message, so all is left here is to exit.
        sys.exit(1)

    datasource_name = data_source.name

    if expectation_suite_name in context.list_expectation_suite_names():
        tell_user_suite_exists(expectation_suite_name)
        sys.exit(1)

    if (
        batch_kwargs_generator_name is None
        or data_asset_name is None
        or batch_kwargs is None
    ):
        (
            datasource_name,
            batch_kwargs_generator_name,
            data_asset_name,
            batch_kwargs,
        ) = get_batch_kwargs(
            context,
            datasource_name=datasource_name,
            batch_kwargs_generator_name=batch_kwargs_generator_name,
            data_asset_name=data_asset_name,
            additional_batch_kwargs=additional_batch_kwargs,
        )
        # In this case, we have "consumed" the additional_batch_kwargs
        additional_batch_kwargs = {}

    if expectation_suite_name is None:
        default_expectation_suite_name = _get_default_expectation_suite_name(
            batch_kwargs, data_asset_name
        )
        while True:
            expectation_suite_name = click.prompt(
                "\nName the new Expectation Suite",
                default=default_expectation_suite_name,
            )
            if expectation_suite_name in context.list_expectation_suite_names():
                tell_user_suite_exists(expectation_suite_name)
            else:
                break

    if empty_suite:
        create_empty_suite(context, expectation_suite_name, batch_kwargs)
        return True, expectation_suite_name, None

    profiling_results = _profile_to_create_a_suite(
        additional_batch_kwargs,
        batch_kwargs,
        batch_kwargs_generator_name,
        context,
        datasource_name,
        expectation_suite_name,
        data_asset_name,
        profiler_configuration,
    )

    if flag_build_docs:
        build_docs(context, view=False)
        if open_docs:
            attempt_to_open_validation_results_in_data_docs(context, profiling_results)

    return True, expectation_suite_name, profiling_results
예제 #10
0
def suite_edit(suite, datasource, directory, jupyter, batch_kwargs):
    """
    Generate a Jupyter notebook for editing an existing expectation suite.

    The SUITE argument is required. This is the name you gave to the suite
    when you created it.

    A batch of data is required to edit the suite, which is used as a sample.

    The edit command will help you specify a batch interactively. Or you can
    specify them manually by providing --batch-kwargs in valid JSON format.

    Read more about specifying batches of data in the documentation: https://docs.greatexpectations.io/
    """
    try:
        context = DataContext(directory)
    except ge_exceptions.ConfigNotFoundError as err:
        cli_message("<red>{}</red>".format(err.message))
        return
    except ge_exceptions.ZeroDotSevenConfigVersionError as err:
        _offer_to_install_new_template(err, context.root_directory)
        return

    suite = _load_suite(context, suite)

    if batch_kwargs:
        try:
            batch_kwargs = json.loads(batch_kwargs)
            if datasource:
                batch_kwargs["datasource"] = datasource
            _batch = context.get_batch(batch_kwargs, suite.expectation_suite_name)
            assert isinstance(_batch, DataAsset)
        except json_parse_exception as je:
            cli_message("<red>Please check that your batch_kwargs are valid JSON.\n{}</red>".format(je))
            sys.exit(1)
        except ge_exceptions.DataContextError:
            cli_message("<red>Please check that your batch_kwargs are able to load a batch.</red>")
            sys.exit(1)
        except ValueError as ve:
            cli_message("<red>Please check that your batch_kwargs are able to load a batch.\n{}</red>".format(ve))
            sys.exit(1)
    else:
        cli_message("""
A batch of data is required to edit the suite - let's help you to specify it."""
        )

        additional_batch_kwargs = None
        try:
            data_source = select_datasource(context, datasource_name=datasource)
        except ValueError as ve:
            cli_message("<red>{}</red>".format(ve))
            sys.exit(1)

        if not data_source:
            cli_message("<red>No datasources found in the context.</red>")
            sys.exit(1)

        if batch_kwargs is None:
            datasource_name, batch_kwarg_generator, data_asset, batch_kwargs = get_batch_kwargs(
                context,
                datasource_name=data_source.name,
                generator_name=None,
                generator_asset=None,
                additional_batch_kwargs=additional_batch_kwargs
            )

    notebook_name = "{}.ipynb".format(suite.expectation_suite_name)

    notebook_path = os.path.join(context.root_directory, context.GE_EDIT_NOTEBOOK_DIR, notebook_name)
    NotebookRenderer().render_to_disk(suite, batch_kwargs, notebook_path)

    cli_message(
        "To continue editing this suite, run <green>jupyter notebook {}</green>".format(
            notebook_path
        )
    )

    if jupyter:
        subprocess.call(["jupyter", "notebook", notebook_path])
예제 #11
0
def _suite_edit(suite, datasource, directory, jupyter, batch_kwargs):
    batch_kwargs_json = batch_kwargs
    batch_kwargs = None
    try:
        context = DataContext(directory)
    except ge_exceptions.ConfigNotFoundError as err:
        cli_message("<red>{}</red>".format(err.message))
        return

    suite = _load_suite(context, suite)
    citations = suite.get_citations(sort=True, require_batch_kwargs=True)

    if batch_kwargs_json:
        try:
            batch_kwargs = json.loads(batch_kwargs_json)
            if datasource:
                batch_kwargs["datasource"] = datasource
            _batch = context.get_batch(batch_kwargs,
                                       suite.expectation_suite_name)
            assert isinstance(_batch, DataAsset)
        except json_parse_exception as je:
            cli_message(
                "<red>Please check that your batch_kwargs are valid JSON.\n{}</red>"
                .format(je))
            sys.exit(1)
        except ge_exceptions.DataContextError:
            cli_message(
                "<red>Please check that your batch_kwargs are able to load a batch.</red>"
            )
            sys.exit(1)
        except ValueError as ve:
            cli_message(
                "<red>Please check that your batch_kwargs are able to load a batch.\n{}</red>"
                .format(ve))
            sys.exit(1)
    elif citations:
        citation = citations[-1]
        batch_kwargs = citation.get("batch_kwargs")

    if not batch_kwargs:
        cli_message("""
A batch of data is required to edit the suite - let's help you to specify it."""
                    )

        additional_batch_kwargs = None
        try:
            data_source = select_datasource(context,
                                            datasource_name=datasource)
        except ValueError as ve:
            cli_message("<red>{}</red>".format(ve))
            sys.exit(1)

        if not data_source:
            cli_message("<red>No datasources found in the context.</red>")
            sys.exit(1)

        if batch_kwargs is None:
            (
                datasource_name,
                batch_kwarg_generator,
                data_asset,
                batch_kwargs,
            ) = get_batch_kwargs(
                context,
                datasource_name=data_source.name,
                generator_name=None,
                generator_asset=None,
                additional_batch_kwargs=additional_batch_kwargs,
            )

    notebook_name = "{}.ipynb".format(suite.expectation_suite_name)

    notebook_path = os.path.join(context.root_directory,
                                 context.GE_EDIT_NOTEBOOK_DIR, notebook_name)
    NotebookRenderer().render_to_disk(suite, notebook_path, batch_kwargs)

    if not jupyter:
        cli_message("To continue editing this suite, run <green>jupyter "
                    f"notebook {notebook_path}</green>")

    if jupyter:
        subprocess.call(["jupyter", "notebook", notebook_path])