def rununlocked(_dest_href,dc_dgsfile_href,dc_density_numericunits,dc_specificheat_numericunits,dc_alphaz_numericunits,dc_alphaxy_numericunits,dc_nominal_lamina_thickness_numericunits,dc_lamina_thickness_numericunits,dc_numlayers_numericunits,dc_inversion_tile_size_y_numericunits,dc_inversion_tile_size_x_numericunits,dc_inversion_channel_str,dc_inversion_startframe_numericunits,dc_flashtime_numericunits,dc_inversion_reflectors_str,xydownsample_numericunits,tikparam_numericunits,dc_cadmodel_channel_str,dc_scalefactor_x_numericunits=dc_value.numericunitsvalue(1.0,"Unitless"),dc_scalefactor_y_numericunits=dc_value.numericunitsvalue(1.0,"Unitless"),dc_numplotrows_int=3,dc_numplotcols_int=4,do_singlestep_bool=True,dc_holesadjusted_xmltree=None,dc_source_approx_dx_numericunits=None,dc_source_approx_dy_numericunits=None): tikparam=tikparam_numericunits.value() dc_prefix_str="greensinversion_" reslist=[] if tikparam==0.0: tikparam=None # 0 and disabled are equivalent pass #rho=float(1.555e3) # kg/m^3 #c=float(850.0) # J/(kg* deg K) rho=dc_density_numericunits.value('kg/m^3') c=dc_specificheat_numericunits.value('J/(kg*K)') # alpha units are m^2/s #alphaz=float(.54e-6) # average value from measurements (Thermal_Properties.ods 11/25/15, averaging in-plane value from 90deg specimen and flash method values) alphaz=dc_alphaz_numericunits.value('m^2/s') #alphaxy=float(3.00e-6) # best evaluation based on Thermal_Properties.ods 3/19/16 based on 0/90 and quasi-isotropic layups alphaxy=dc_alphaxy_numericunits.value('m^2/s') # Lamina thickness based on thermal_properties.ods average thickness of 8.05 mm for 3(?) layers of 16 plies # nominal_lamina_thickness=8.05e-3/(3.0*16.0) nominal_lamina_thickness=dc_nominal_lamina_thickness_numericunits.value('m') # Load input file # NOTE: When changing input file: # 1. Verify flashtime. Adjust as appropriate # 2. Verify startframe. Adjust as appropriate # 3. Execute file load code (below) and evaluate # a) XStepMeters (must match dx) # b) YStepMeters (must match dy) # c) TStep (must match dt) # d) bases[2][startframe]-flashtrigtime (must match t0) # e) bases[2][startframe:endframe].shape[0] (must match nt) # 4. Adjust dx, dy, dt, t0, and/or nt to satisfy above criteria # 5. Once adjusted, assert()s below should pass. inputfile=dc_dgsfile_href.getpath() # was "/tmp/CA-1_Bottom_2015_11_19_undistorted_orthographic.dgs" (inputfile_basename,inputfile_ext) = posixpath.splitext(dc_dgsfile_href.get_bare_unquoted_filename()) if inputfile_ext==".bz2" or inputfile_ext==".gz": # .dgs.bz2 or .dgs.gz orig_inputfile_basename = inputfile_basename inputfile_basename=posixpath.splitext(orig_inputfile_basename)[0] inputfile_ext = posixpath.splitext(orig_inputfile_basename)[1] + inputfile_ext pass #flashtrigtime=0.2 # seconds -- from pequod system #flashtime=flashtrigtime+1.0/100.0 # add 1/100th second delay of flash peak (wild guess!) flashtime=dc_flashtime_numericunits.value('s') #channel="DiffStack" channel=dc_inversion_channel_str # frame #165: Time relative to trigger = bases[2][165]-flashtrigtime # = 0.052869999999999973 #startframe=13 # zero-based, not one-based startframe=int(round(dc_inversion_startframe_numericunits.value('unitless'))) (junkmd,wfmdict)=dgf.loadsnapshot(inputfile,memmapok=True) channel3d = "Proj" + dc_inversion_channel_str[:-4] # Proj + diffstack channel with _tex stripped objframe=coordframe() (obj, TexChanPrefix) = ndepart_from_dataguzzler_wfm(wfmdict[channel3d],wfmdict,objframe) channel_weights=channel+"_weights" if channel_weights not in wfmdict: channel_weights = None pass (ndim,DimLen,IniVal,Step,bases)=dg_eval.geom(wfmdict[channel],raw=True) (ndim,Coord,Units,AmplCoord,AmplUnits)=dg_eval.axes(wfmdict[channel],raw=True) XIniValMeters=dc_value.numericunitsvalue(IniVal[0],Units[0]).value('m') YIniValMeters=dc_value.numericunitsvalue(IniVal[1],Units[1]).value('m') # Apply scaling factor to XStepMeters (note that Coord, above, is not corrected!!!) XStepMeters=dc_value.numericunitsvalue(Step[0],Units[0]).value('m')*dc_scalefactor_x_numericunits.value() YStepMeters=dc_value.numericunitsvalue(Step[1],Units[1]).value('m')*dc_scalefactor_y_numericunits.value() TStep=Step[2] (saturation_fraction,saturation_map)=greensinversion.saturationcheck(wfmdict[channel].data.transpose((2,1,0)),startframe) if saturation_fraction > .2: raise ValueError("greensinversionstep: ERROR: %.1f%% of pixels are saturated at least once beyond start frame!" % (saturation_fraction*100.0)) if saturation_fraction > .02: sys.stderr.write("greensinversionstep: WARNING: %.1f%% of pixels are saturated at least once beyond start frame!\n" % (saturation_fraction*100.0)) pass # Apply spatial downsampling to keep inversion complexity under control #xydownsample=2 xydownsample=int(round(xydownsample_numericunits.value("unitless"))) # reflectors is a tuple of (z,ny,nx) tuples representing # possible z values for reflectors and how many y and x pieces # they should be split into. # it should be ordered from the back surface towards the # front surface. # reflectors is (depth, reflector_ny,reflector_nx) # # need pre-calculation of z_bnd to determine reflectors # z_bnd=np.arange(nz+1,dtype='d')*dz # z boundary starts at zero # reflectors=( (z_bnd[15],4,4), # (z_bnd[9],4,4), # (z_bnd[5],6,6), # (z_bnd[2],10,10)) reflectors_float=ast.literal_eval(dc_inversion_reflectors_str) # reflectors can just be reflectors_float but this is here to avoid # some temporary recalculations 3/29/16 reflectors=tuple([ (np.float64(reflector[0]),reflector[1],reflector[2]) for reflector in reflectors_float]) deepest_tstar = reflectors[0][0]**2.0/(np.pi*alphaz) endframe = np.argmin(np.abs(bases[2]-flashtime-deepest_tstar*2.0)) # see also generateinversionsteps() call to timelimitmatrix() # step sizes for inversion dx=XStepMeters*1.0*xydownsample dy=YStepMeters*1.0*xydownsample dt=TStep t0=bases[2][startframe]-flashtime nt=bases[2][startframe:endframe].shape[0] dz=nominal_lamina_thickness # use nominal value so we don't recalculate everything for each sample # These now satisfied by definition #assert(XStepMeters==dx) #assert(YStepMeters==dy) #assert(TStep==dt) #assert(bases[2][startframe]-flashtrigtime==t0) # Start time matches NOTE.... CHANGED FROM flashtrigtime to flashtime #assert(bases[2][startframe:].shape[0]==nt) # Number of frames match # These are parameters for the reconstruction, not the expermental data #nz=16 # NOTE: nz*dz should match specimen thickness nz=int(round(dc_numlayers_numericunits.value('unitless'))) # size of each tile for tiled inversion #maxy=38.0e-3 #maxx=36.0e-3 maxy=dc_inversion_tile_size_y_numericunits.value('m') maxx=dc_inversion_tile_size_x_numericunits.value('m') source_approx_dy=None source_approx_dx=None if dc_source_approx_dy_numericunits is not None: source_approx_dy=dc_source_approx_dy_numericunits.value('m') pass if dc_source_approx_dx_numericunits is not None: source_approx_dx=dc_source_approx_dx_numericunits.value('m') pass greensconvolution_params=read_greensconvolution() greensconvolution_params.get_opencl_context("GPU",None) #(kx,ky,kz, # ny,nx, # z,y,x, # zgrid,ygrid,xgrid, # z_bnd,y_bnd,x_bnd, # flashsourcevecs, # reflectorsourcevecs, # depths,tstars, # conditions,prevconditions,prevscaledconditions, # rowselects, # inversions, # inversionsfull, # inverses, # nresults, # ss_rowselects, # ss_inversions, # ss_inversionsfull, # ss_inverses, # ss_nresults)=greensinversion.greensinversion_lookup(cache_dir,rho,c,alphaz,alphaxy,dz,dy,dx,nz,maxy,maxx,t0,dt,nt,reflectors) (kx,ky,kz, ny,nx, y,x, ygrid,xgrid, y_bnd,x_bnd, num_sources_y,num_sources_x, trange, rowscaling, flashsourcecolumnscaling,flashsourcevecs, reflectorcolumnscaling,reflectorsourcevecs, depths,tstars, conditions,prevconditions,prevscaledconditions, rowselects,inversions,inversionsfull,inverses,nresults)=greensinversion.setupinversionprob(rho,c,alphaz,alphaxy,dy,dx,maxy,maxx,t0,dt,nt,reflectors,source_approx_dy=source_approx_dy,source_approx_dx=source_approx_dx) # can view individual source maps with # reflectorsourcevecs[:,0].reshape(ny,nx,nt), # e.g. imshow(reflectorsourcevecs[:,5].reshape(ny,nx,nt)[:,:,200]) #pl.figure(1) #pl.clf() #pl.imshow(reflectorsourcevecs[0][:,5].reshape(ny,nx,nt)[:,:,200]) #pl.figure(2) #pl.clf() #pl.imshow(reflectorsourcevecs[1][:,5].reshape(ny,nx,nt)[:,:,200]) #print("Generating inversion steps") # #(rowselects,inversions,inversionsfull,inverses,nresults)=greensinversion.generateinversionsteps(rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,tstars,ny,nx,trange,depths) if do_singlestep_bool: print("Generating single-step inversion") (ss_rowselects,ss_inversions,ss_inversionsfull,ss_inverses,ss_nresults)=greensinversion.generatesinglestepinversion(rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,tstars,ny,nx,trange,depths) pass # To plot: # loglog(trange+dt/2,T[20,20,:]) # imshow(T[:,:,200] # Break object into tiles, perform inversion on each tile (minyminx_corners,yranges,xranges,contributionprofiles)=greensinversion.build_tiled_rectangle(ny,nx,dy,dx,reflectors,wfmdict[channel].data.transpose((2,1,0)),xydownsample) inputmats = [ wfmdict[channel].data[(xidx*xydownsample):((xidx+nx)*xydownsample):xydownsample,(yidx*xydownsample):((yidx+ny)*xydownsample):xydownsample,startframe:endframe].transpose((2,1,0)) for (yidx,xidx) in minyminx_corners ] # transpose to convert dataguzzler axis ordering (x,y,t) to greensinversion ordering (t,y,x) print("Filling holes...") inputmats_holesfilled = [ greensinversion.fillholes.fillholes_flat(inputmat) for inputmat in inputmats ] print("Done filling holes.") parallelevaluate=False # GPU is currently slightly SLOWER here (WHY?) so we don't use it if parallelevaluate: inversionevalfunc=greensinversion.inversion.parallelperforminversionsteps OpenCL_CTX=greensconvolution_params.get_opencl_context() #greensinversion.inversion.Get_OpenCL_Context() pass else: inversionevalfunc=greensinversion.inversion.serialperforminversionsteps OpenCL_CTX=None pass nextfignum=1 # tikparam diagnostic plots (multi-step) pl.figure(nextfignum) pl.clf() for inversioncnt in range(len(inversions)): pl.plot(inverses[inversioncnt][1]) pass pl.xlabel('Singular value index') pl.ylabel('Magnitude') nextfignum+=1 if do_singlestep_bool: pl.figure(nextfignum) pl.clf() pl.plot(ss_inverses[0][1]) pl.xlabel('Singular value index (single step)') pl.ylabel('Magnitude') nextfignum+=1 pass # scaled tikparam #raise ValueError("foo!") #z_reference=reflectors[-1][0] # z coordinate of shallowest reflectors (recall reflectors are deepest first) #scaledtikparams=greensinversion.scale_tikparam(tikparam,z_reference,reflectors) #if tikparam is not None: # # tikparam scaled diagnostic plot (multi-step) # pl.figure(nextfignum) # pl.clf() # for inversioncnt in range(len(inversions)): # pl.plot(inverses[inversioncnt][1] * (tikparam/scaledtikparams[inversioncnt])) # * z_values[inversioncnt]/z_reference) # pass # pl.xlabel('Scaled singular value index') # pl.ylabel('Magnitude') # nextfignum+=1 # pass (inversioncoeffs_list,errs_list,tikparams_list) = inversionevalfunc(OpenCL_CTX, rowselects, inversions, inversionsfull, inverses, nresults, inputmats_holesfilled, tikparam) fullinverse=np.zeros((len(reflectors)+1,wfmdict[channel].data.shape[1]//xydownsample,wfmdict[channel].data.shape[0]//xydownsample),dtype='d') fullinverse_x_bnd=IniVal[0]-Step[0]*xydownsample/2.0 + np.arange(DimLen[0]//xydownsample+1,dtype='d')*Step[0]*xydownsample fullinverse_y_bnd=IniVal[1]-Step[1]*xydownsample/2.0 + np.arange(DimLen[1]//xydownsample+1,dtype='d')*Step[1]*xydownsample for tile_idx in range(len(minyminx_corners)): (yidx,xidx)=minyminx_corners[tile_idx] fullinverse[:,yidx:(yidx+ny),xidx:(xidx+nx)] += greensinversion.buildconcreteinverse(inversioncoeffs_list[tile_idx],reflectors,ygrid,xgrid,y_bnd,x_bnd,ny,nx,num_sources_y,num_sources_x)*contributionprofiles[tile_idx] pass # raise ValueError("Debugging!") if do_singlestep_bool: (ss_inversioncoeffs_list,ss_errs_list,ss_tikparams_list) = inversionevalfunc(OpenCL_CTX, ss_rowselects, ss_inversions, ss_inversionsfull, ss_inverses, ss_nresults, inputmats_holesfilled, tikparam) ss_fullinverse=np.zeros((len(reflectors)+1,wfmdict[channel].data.shape[1]//xydownsample,wfmdict[channel].data.shape[0]//xydownsample),dtype='d') for tile_idx in range(len(minyminx_corners)): (yidx,xidx)=minyminx_corners[tile_idx] ss_fullinverse[:,yidx:(yidx+ny),xidx:(xidx+nx)] += greensinversion.buildconcreteinverse(ss_inversioncoeffs_list[tile_idx],reflectors,ygrid,xgrid,y_bnd,x_bnd,ny,nx,num_sources_y,num_sources_x)*contributionprofiles[tile_idx] pass # for tile_idx in range(len(minyminx_corners)): # (yidx,xidx)=minyminx_corners[tile_idx] # # # (ss_inversioncoeffs,ss_residual,errs,ss_tikparams)=greensinversion.performinversionsteps(ss_rowselects,ss_inversions,ss_inversionsfull,ss_inverses,ss_nresults,wfmdict[channel].data[(xidx*xydownsample):((xidx+nx)*xydownsample):xydownsample,(yidx*xydownsample):((yidx+ny)*xydownsample):xydownsample,startframe:endframe].transpose((2,1,0)),tikparam) # transpose to convert dataguzzler axis ordering (x,y,t) to greensinversion ordering (t,y,x) # # # ss_concreteinverse=greensinversion.buildconcreteinverse(ss_inversioncoeffs,reflectors,ygrid,xgrid,y_bnd,x_bnd,ny,nx) # # concreteinverse is (len(reflectors)+1,ny,nx)... first layer is surface # # ... accumulate contributions of each tile to full inverse # ss_fullinverse[:,yidx:(yidx+ny),xidx:(xidx+nx)] += ss_concreteinverse*contributionprofiles[tile_idx] # pass pass (fig,subplots,images)=greensinversion.plotconcreteinverse(nextfignum,dc_numplotrows_int,dc_numplotcols_int,saturation_map,fullinverse,reflectors,-10000.0,30000.0,fullinverse_y_bnd,fullinverse_x_bnd,num_sources_y,num_sources_x) nextfignum+=1 if tikparam is None: outpng_fname="%s_greensinversion.png" % (inputfile_basename) movieoutdirname="%s_greensinversion_movie/" % (inputfile_basename) movieoutfilename="%s_greensinversion_movie_depth_%%05.2f.png" % (inputfile_basename) pass else: outpng_fname="%s_greensinversion_tik_%g.png" % (inputfile_basename,tikparam) movieoutdirname="%s_greensinversion_tik_%g_movie/" % (inputfile_basename,tikparam) movieoutfilename="%s_greensinversion_tik_%g_movie_depth_%%05.2f.png" % (inputfile_basename,tikparam) pass outpng_href=dc_value.hrefvalue(quote(outpng_fname),_dest_href) fig.savefig(outpng_href.getpath()) reslist.append( (("dc:greensinversion_figure",{ "tikparam": str(tikparam)}), outpng_href)) movieoutdirhref=dc_value.hrefvalue(quote(movieoutdirname),contexthref=_dest_href) (nextfignum,plots,images,plothrefs,depths) = greensinversion.inversion.plotconcreteinversemovie(nextfignum,movieoutdirhref,movieoutfilename,saturation_map,fullinverse,reflectors,-10000.0,30000.0,fullinverse_y_bnd,fullinverse_x_bnd,num_sources_y,num_sources_x,dpi=300) if dc_holesadjusted_xmltree is not None: for plot in plots: ax=plot.gca() ax.xaxis.label.set_size(20) ax.yaxis.label.set_size(20) ax.title.set_size(20) pass # Add hole drawings for paper holesdoc=dc_holesadjusted_xmltree.get_xmldoc() for hole in holesdoc.xpath("(dc:hole|dc:annulus)[@num]"): numstr=holesdoc.xpathcontext(hole,"@num")[0] numnum=re.match(r"""(\d+)""",numstr).group(1) if hole.tag.endswith("hole") and len(holesdoc.xpath("dc:annulus[translate(@num,translate(@num,'0123456789',''),'') = '%s']" % (numnum))) > 0: # if there is an annulus with this number, ignore the hole. continue holecenterx=dc_value.numericunitsvalue.fromxml(holesdoc,holesdoc.child(hole,"dc:xpos")) holecentery=dc_value.numericunitsvalue.fromxml(holesdoc,holesdoc.child(hole,"dc:ypos")) holediameter=dc_value.numericunitsvalue.fromxml(holesdoc,holesdoc.child(hole,"dc:diameter")) holeradius=holediameter/2.0 holedepth=dc_value.numericunitsvalue.fromxml(holesdoc,holesdoc.child(hole,"dc:depth")) for plot in plots: ax=plot.gca() circ=pl.Circle((holecenterx.inunits('mm').value(), holecentery.inunits('mm').value()), holeradius.inunits('mm').value(), facecolor='none') ax.add_artist(circ) pass pass for plotcnt in range(len(plots)): # rewrite plot files plot=plots[plotcnt] plothref=plothrefs[plotcnt] plot.savefig(plothref.getpath(),dpi=300) pass pass for cnt in range(len(plothrefs)): reslist.append( (("dc:greensinversion_movie_frame",{ "tikparam": str(tikparam),"depth":str(depths[cnt])}), plothrefs[cnt])) pass if do_singlestep_bool: (ss_fig,ss_subplots,ss_images)=greensinversion.plotconcreteinverse(nextfignum,dc_numplotrows_int,dc_numplotcols_int,saturation_map,ss_fullinverse,reflectors,-10000.0,30000.0,fullinverse_y_bnd,fullinverse_x_bnd,num_sources_y,num_sources_x) nextfignum+=1 if tikparam is None: ss_outpng_fname="%s_ss_greensinversion.png" % (inputfile_basename) ss_movieoutdirname="%s_ss_greensinversion_movie/" % (inputfile_basename) ss_movieoutfilename="%s_ss_greensinversion_movie_depth_%%05.2f.png" % (inputfile_basename) pass else: ss_outpng_fname="%s_ss_greensinversion_tik_%g.png" % (inputfile_basename,tikparam) ss_movieoutdirname="%s_ss_greensinversion_tik_%g_movie/" % (inputfile_basename,tikparam) ss_movieoutfilename="%s_ss_greensinversion_tik_%g_movie_depth_%%05.2f.png" % (inputfile_basename,tikparam) pass ss_outpng_href=dc_value.hrefvalue(quote(ss_outpng_fname),_dest_href) ss_fig.savefig(ss_outpng_href.getpath()) reslist.append( (("dc:greensinversion_singlestep_figure", {"tikparam": str(tikparam) }), ss_outpng_href) ) ss_movieoutdirhref=dc_value.hrefvalue(quote(ss_movieoutdirname),contexthref=_dest_href) (nextfignum,ss_plots,ss_images,ss_plothrefs,ss_depths) = greensinversion.inversion.plotconcreteinversemovie(nextfignum,ss_movieoutdirhref,ss_movieoutfilename,saturation_map,ss_fullinverse,reflectors,-10000.0,30000.0,fullinverse_y_bnd,fullinverse_x_bnd,num_sources_y,num_sources_x,resolution=300) for cnt in range(len(ss_plothrefs)): reslist.append( (("dc:ss_greensinversion_movie_frame",{ "tikparam": str(tikparam),"depth":str(ss_depths[cnt])}), ss_plothrefs[cnt])) pass pass outwfmdict={} outwfmdict[dc_cadmodel_channel_str]=copy.deepcopy(wfmdict[dc_cadmodel_channel_str]) SplitTextureChans=dgm.GetMetaDatumWIStr(wfmdict[dc_cadmodel_channel_str],"TextureChans","").split("|") PrefixedTextureChans="|".join([ dc_prefix_str + TexChanPrefix + TexChan for TexChan in SplitTextureChans ]) gi_3d=dg.wfminfo() #gi_3d.Name=dc_prefix_str+dc_cadmodel_channel_str gi_3d.Name="Proj"+dc_prefix_str+TexChanPrefix+dc_cadmodel_channel_str gi_3d.dimlen=np.array((1,),dtype='i8') gi_3d.data=np.array((1,),dtype='f') dgm.AddMetaDatumWI(gi_3d,dgm.MetaDatum("VRML97GeomRef",dc_cadmodel_channel_str)) dgm.AddMetaDatumWI(gi_3d,dgm.MetaDatum("X3DGeomRef",dc_cadmodel_channel_str)) #texchanprefix=gi_3d.Name[:gi_3d.Name.find(dc_unprefixed_texname_str)] dgm.AddMetaDatumWI(gi_3d,dgm.MetaDatum("TexChanPrefix",dc_prefix_str+TexChanPrefix)) dgm.AddMetaDatumWI(gi_3d,dgm.MetaDatum("TextureChans",PrefixedTextureChans)) outwfmdict[gi_3d.Name]=gi_3d outwfm=dg.wfminfo() #outwfm.Name="greensinversion" outwfm.Name=dc_prefix_str+dc_inversion_channel_str outwfmdict[outwfm.Name]=outwfm # Shift IniVals according to xydownsample: # IniVal[0] is X coordinate of center of corner pixel of undownsampled image # IniVal[0] is X coordinate of center of corner pixel downsampled image # but that pixel is twice as big, so the corner of the image itself # has changed! dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("IniVal1",IniVal[0])) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("IniVal2",IniVal[1])) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("Step1",XStepMeters*xydownsample)) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("Step2",YStepMeters*xydownsample)) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("Coord1",Coord[0])) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("Coord2",Coord[1])) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("Units1",Units[0])) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("Units2",Units[1])) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("IniVal3",0.0)) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("Step3",1.0)) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("Coord3","Depth Index")) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("Units3","unitless")) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("AmplCoord","Heating intensity")) dgm.AddMetaDatumWI(outwfm,dgm.MetaDatum("AmplUnits","J/m^2")) # Copy landmark metadata LandmarkMD = [ MDName for MDName in list(wfmdict[channel].MetaData.keys()) if MDName.startswith("LANDMARK_") ] for LandmarkName in LandmarkMD: dgm.AddMetaDatumWI(outwfm,copy.deepcopy(wfmdict[channel].MetaData[LandmarkName])) pass if channel_weights is not None: #outwfm_weights=copy.deepcopy(wfmdict[channel_weights])#dg.wfminfo() #outwfm_weights.Name="greensinversion_weights" outwfm_weights=dg.wfminfo() outwfm_weights.Name=dc_prefix_str+dc_inversion_channel_str+"_weights" outwfm_weights.data=wfmdict[channel_weights].data[::xydownsample,::xydownsample] outwfm_weights.dimlen=np.array(outwfm_weights.data.shape) outwfm_weights.ndim=2 outwfm_weights.MetaData=copy.deepcopy(outwfm.MetaData) dgm.AddMetaDatumWI(outwfm_weights,dgm.MetaDatum("AmplCoord","Weighting")) dgm.AddMetaDatumWI(outwfm_weights,dgm.MetaDatum("AmplUnits","Unitless")) outwfmdict[outwfm_weights.Name]=outwfm_weights pass if do_singlestep_bool: ss_outwfm=copy.deepcopy(outwfm) ss_outwfm.Name="ss_greensinversion" outwfmdict[ss_outwfm.Name]=ss_outwfm pass # dgs file is written in (X,Y,Z) fortran order, so we write # dimlen in reverse order and transpose the data outwfm.ndim=3 outwfm.dimlen=np.array(fullinverse.shape[::-1]) outwfm.data=fullinverse.transpose().astype(np.float32) outwfm.NeedData=False outwfm.NeedMetaData=False outwfm.HaveData=True outwfm.HaveMetaData=True outwfm_saturationmap=dg.wfminfo() outwfm_saturationmap.Name="saturation_map" outwfmdict[outwfm_saturationmap.Name]=outwfm_saturationmap outwfm_saturationmap.dimlen=np.array(saturation_map.shape[::-1]) outwfm_saturationmap.data=saturation_map.transpose().astype(np.float32) outwfm_saturationmap.ndim=outwfm_saturationmap.dimlen.shape[0] outwfm_saturationmap.NeedData=False outwfm_saturationmap.NeedMetaData=False outwfm_saturationmap.HaveData=True outwfm_saturationmap.HaveMetaData=True outwfm_saturationmap.MetaData=copy.deepcopy(outwfm.MetaData) if do_singlestep_bool: ss_outwfm.ndim=3 ss_outwfm.dimlen=np.array(ss_fullinverse.shape[::-1]) ss_outwfm.data=ss_fullinverse.transpose().astype(np.float32) ss_outwfm.NeedData=False ss_outwfm.NeedMetaData=False ss_outwfm.HaveData=True ss_outwfm.HaveMetaData=True pass if tikparam is None: outdgs_fname="%s_greensinversion.dgs" % (inputfile_basename) pass else: outdgs_fname="%s_greensinversion_tik_%g.dgs" % (inputfile_basename,tikparam) pass outdgs_href=dc_value.hrefvalue(quote(outdgs_fname),_dest_href) dgf.savesnapshot(outdgs_href.getpath(),outwfmdict) reslist.append( (("dc:greensinversion_dgsfile",{"tikparam": str(tikparam)}), outdgs_href)) if do_singlestep_bool: pass # # greensconvolution_params.get_opencl_context() # tile_idx=14 # (yidx,xidx)=minyminx_corners[tile_idx] # # inputmats=[wfmdict[channel].data[(xidx*xydownsample):((xidx+nx)*xydownsample):xydownsample,(yidx*xydownsample):((yidx+ny)*xydownsample):xydownsample,startframe:endframe].transpose((2,1,0))] # greeninversion.inversion.parallelperforminversionsteps(greensconvolution_params.OpenCL_CTX,rowselects,inversions,inversionsfull,inverses,nresults,inputmats,None) return reslist
pl.figure(2) pl.clf() pl.imshow(reflectorsourcevecs[1][:, 5].reshape(nt, ny, nx)[200, :, :]) print("Generating inversion steps") (rowselects, inversions, inversionsfull, inverses, nresults) = greensinversion.generateinversionsteps( rowscaling, flashsourcecolumnscaling, flashsourcevecs, reflectorcolumnscaling, reflectorsourcevecs, tstars, ny, nx, trange, depths) print("Generating single-step inversion") (ss_rowselects, ss_inversions, ss_inversionsfull, ss_inverses, ss_nresults) = greensinversion.generatesinglestepinversion( rowscaling, flashsourcecolumnscaling, flashsourcevecs, reflectorcolumnscaling, reflectorsourcevecs, tstars, ny, nx, trange, depths) # diagnostic plots for finding Tikhonov parameter pl.figure(3) pl.clf() for inversioncnt in range(len(inversions)): pl.plot(inverses[inversioncnt][1]) pass pl.xlabel('Singular value index') pl.ylabel('Magnitude') pl.figure(4) pl.clf() pl.plot(ss_inverses[0][1]) pl.xlabel('Singular value index (single step)')
def rununlocked(_dest_href, dc_dgsfile_href, dc_density_numericunits, dc_specificheat_numericunits, dc_alphaz_numericunits, dc_alphaxy_numericunits, dc_nominal_lamina_thickness_numericunits, dc_lamina_thickness_numericunits, dc_numlayers_numericunits, dc_inversion_tile_size_y_numericunits, dc_inversion_tile_size_x_numericunits, dc_inversion_channel_str, dc_inversion_startframe_numericunits, dc_flashtime_numericunits, dc_inversion_reflectors_str, xydownsample_numericunits, tikparam_numericunits, dc_cadmodel_channel_str, dc_scalefactor_x_numericunits=dc_value.numericunitsvalue( 1.0, "Unitless"), dc_scalefactor_y_numericunits=dc_value.numericunitsvalue( 1.0, "Unitless"), dc_numplotrows_int=3, dc_numplotcols_int=4, do_singlestep_bool=True, dc_holesadjusted_xmltree=None, dc_source_approx_dx_numericunits=None, dc_source_approx_dy_numericunits=None): tikparam = tikparam_numericunits.value() dc_prefix_str = "greensinversion_" reslist = [] if tikparam == 0.0: tikparam = None # 0 and disabled are equivalent pass #rho=float(1.555e3) # kg/m^3 #c=float(850.0) # J/(kg* deg K) rho = dc_density_numericunits.value('kg/m^3') c = dc_specificheat_numericunits.value('J/(kg*K)') # alpha units are m^2/s #alphaz=float(.54e-6) # average value from measurements (Thermal_Properties.ods 11/25/15, averaging in-plane value from 90deg specimen and flash method values) alphaz = dc_alphaz_numericunits.value('m^2/s') #alphaxy=float(3.00e-6) # best evaluation based on Thermal_Properties.ods 3/19/16 based on 0/90 and quasi-isotropic layups alphaxy = dc_alphaxy_numericunits.value('m^2/s') # Lamina thickness based on thermal_properties.ods average thickness of 8.05 mm for 3(?) layers of 16 plies # nominal_lamina_thickness=8.05e-3/(3.0*16.0) nominal_lamina_thickness = dc_nominal_lamina_thickness_numericunits.value( 'm') # Load input file # NOTE: When changing input file: # 1. Verify flashtime. Adjust as appropriate # 2. Verify startframe. Adjust as appropriate # 3. Execute file load code (below) and evaluate # a) XStepMeters (must match dx) # b) YStepMeters (must match dy) # c) TStep (must match dt) # d) bases[2][startframe]-flashtrigtime (must match t0) # e) bases[2][startframe:endframe].shape[0] (must match nt) # 4. Adjust dx, dy, dt, t0, and/or nt to satisfy above criteria # 5. Once adjusted, assert()s below should pass. inputfile = dc_dgsfile_href.getpath( ) # was "/tmp/CA-1_Bottom_2015_11_19_undistorted_orthographic.dgs" (inputfile_basename, inputfile_ext) = posixpath.splitext( dc_dgsfile_href.get_bare_unquoted_filename()) if inputfile_ext == ".bz2" or inputfile_ext == ".gz": # .dgs.bz2 or .dgs.gz orig_inputfile_basename = inputfile_basename inputfile_basename = posixpath.splitext(orig_inputfile_basename)[0] inputfile_ext = posixpath.splitext( orig_inputfile_basename)[1] + inputfile_ext pass #flashtrigtime=0.2 # seconds -- from pequod system #flashtime=flashtrigtime+1.0/100.0 # add 1/100th second delay of flash peak (wild guess!) flashtime = dc_flashtime_numericunits.value('s') #channel="DiffStack" channel = dc_inversion_channel_str # frame #165: Time relative to trigger = bases[2][165]-flashtrigtime # = 0.052869999999999973 #startframe=13 # zero-based, not one-based startframe = int( round(dc_inversion_startframe_numericunits.value('unitless'))) (junkmd, wfmdict) = dgf.loadsnapshot(inputfile, memmapok=True) channel3d = "Proj" + dc_inversion_channel_str[: -4] # Proj + diffstack channel with _tex stripped objframe = coordframe() (obj, TexChanPrefix) = ndepart_from_dataguzzler_wfm(wfmdict[channel3d], wfmdict, objframe) channel_weights = channel + "_weights" if channel_weights not in wfmdict: channel_weights = None pass (ndim, DimLen, IniVal, Step, bases) = dg_eval.geom(wfmdict[channel], raw=True) (ndim, Coord, Units, AmplCoord, AmplUnits) = dg_eval.axes(wfmdict[channel], raw=True) XIniValMeters = dc_value.numericunitsvalue(IniVal[0], Units[0]).value('m') YIniValMeters = dc_value.numericunitsvalue(IniVal[1], Units[1]).value('m') # Apply scaling factor to XStepMeters (note that Coord, above, is not corrected!!!) XStepMeters = dc_value.numericunitsvalue( Step[0], Units[0]).value('m') * dc_scalefactor_x_numericunits.value() YStepMeters = dc_value.numericunitsvalue( Step[1], Units[1]).value('m') * dc_scalefactor_y_numericunits.value() TStep = Step[2] (saturation_fraction, saturation_map) = greensinversion.saturationcheck( wfmdict[channel].data.transpose((2, 1, 0)), startframe) if saturation_fraction > .2: raise ValueError( "greensinversionstep: ERROR: %.1f%% of pixels are saturated at least once beyond start frame!" % (saturation_fraction * 100.0)) if saturation_fraction > .02: sys.stderr.write( "greensinversionstep: WARNING: %.1f%% of pixels are saturated at least once beyond start frame!\n" % (saturation_fraction * 100.0)) pass # Apply spatial downsampling to keep inversion complexity under control #xydownsample=2 xydownsample = int(round(xydownsample_numericunits.value("unitless"))) # reflectors is a tuple of (z,ny,nx) tuples representing # possible z values for reflectors and how many y and x pieces # they should be split into. # it should be ordered from the back surface towards the # front surface. # reflectors is (depth, reflector_ny,reflector_nx) # # need pre-calculation of z_bnd to determine reflectors # z_bnd=np.arange(nz+1,dtype='d')*dz # z boundary starts at zero # reflectors=( (z_bnd[15],4,4), # (z_bnd[9],4,4), # (z_bnd[5],6,6), # (z_bnd[2],10,10)) reflectors_float = ast.literal_eval(dc_inversion_reflectors_str) # reflectors can just be reflectors_float but this is here to avoid # some temporary recalculations 3/29/16 reflectors = tuple([(np.float64(reflector[0]), reflector[1], reflector[2]) for reflector in reflectors_float]) deepest_tstar = reflectors[0][0]**2.0 / (np.pi * alphaz) endframe = np.argmin( np.abs(bases[2] - flashtime - deepest_tstar * 2.0) ) # see also generateinversionsteps() call to timelimitmatrix() # step sizes for inversion dx = XStepMeters * 1.0 * xydownsample dy = YStepMeters * 1.0 * xydownsample dt = TStep t0 = bases[2][startframe] - flashtime nt = bases[2][startframe:endframe].shape[0] dz = nominal_lamina_thickness # use nominal value so we don't recalculate everything for each sample # These now satisfied by definition #assert(XStepMeters==dx) #assert(YStepMeters==dy) #assert(TStep==dt) #assert(bases[2][startframe]-flashtrigtime==t0) # Start time matches NOTE.... CHANGED FROM flashtrigtime to flashtime #assert(bases[2][startframe:].shape[0]==nt) # Number of frames match # These are parameters for the reconstruction, not the expermental data #nz=16 # NOTE: nz*dz should match specimen thickness nz = int(round(dc_numlayers_numericunits.value('unitless'))) # size of each tile for tiled inversion #maxy=38.0e-3 #maxx=36.0e-3 maxy = dc_inversion_tile_size_y_numericunits.value('m') maxx = dc_inversion_tile_size_x_numericunits.value('m') source_approx_dy = None source_approx_dx = None if dc_source_approx_dy_numericunits is not None: source_approx_dy = dc_source_approx_dy_numericunits.value('m') pass if dc_source_approx_dx_numericunits is not None: source_approx_dx = dc_source_approx_dx_numericunits.value('m') pass greensconvolution_params = read_greensconvolution() greensconvolution_params.get_opencl_context("GPU", None) #(kx,ky,kz, # ny,nx, # z,y,x, # zgrid,ygrid,xgrid, # z_bnd,y_bnd,x_bnd, # flashsourcevecs, # reflectorsourcevecs, # depths,tstars, # conditions,prevconditions,prevscaledconditions, # rowselects, # inversions, # inversionsfull, # inverses, # nresults, # ss_rowselects, # ss_inversions, # ss_inversionsfull, # ss_inverses, # ss_nresults)=greensinversion.greensinversion_lookup(cache_dir,rho,c,alphaz,alphaxy,dz,dy,dx,nz,maxy,maxx,t0,dt,nt,reflectors) kx = alphaxy * rho * c ky = alphaxy * rho * c kz = alphaz * rho * c trange = t0 + np.arange(nt, dtype='d') * dt gi_params = (rho, c, alphaz, alphaxy, dy, dx, maxy, maxx, t0, dt, nt, reflectors, trange, greensconvolution_params) flat_gi_grid = build_gi_grid(dy, maxy, dx, maxx) (ny, nx, y, x, ygrid, xgrid, y_bnd, x_bnd) = flat_gi_grid num_sources_y = 2 num_sources_x = 2 if source_approx_dy is not None or source_approx_dx is not None: (num_sources_y, num_sources_x) = greensinversion.num_sources(y, x, y_bnd, x_bnd, source_approx_dy, source_approx_dx) pass # can view individual source maps with # reflectorsourcevecs[:,0].reshape(ny,nx,nt), # e.g. imshow(reflectorsourcevecs[:,5].reshape(ny,nx,nt)[:,:,200]) #pl.figure(1) #pl.clf() #pl.imshow(reflectorsourcevecs[0][:,5].reshape(ny,nx,nt)[:,:,200]) #pl.figure(2) #pl.clf() #pl.imshow(reflectorsourcevecs[1][:,5].reshape(ny,nx,nt)[:,:,200]) # To plot: # loglog(trange+dt/2,T[20,20,:]) # imshow(T[:,:,200] # Break object into tiles, perform inversion on each tile (minyminx_corners, yranges, xranges, contributionprofiles) = greensinversion.build_tiled_rectangle( ny, nx, dy, dx, reflectors, wfmdict[channel].data.transpose( (2, 1, 0)), xydownsample) inputmats = [ wfmdict[channel].data[(xidx * xydownsample):((xidx + nx) * xydownsample):xydownsample, (yidx * xydownsample):((yidx + ny) * xydownsample):xydownsample, startframe:endframe].transpose((2, 1, 0)) for (yidx, xidx) in minyminx_corners ] # transpose to convert dataguzzler axis ordering (x,y,t) to greensinversion ordering (t,y,x) print("Filling holes...") inputmats_holesfilled = [ greensinversion.fillholes.fillholes_flat(inputmat) for inputmat in inputmats ] print("Done filling holes.") parallelevaluate = False # GPU is currently slightly SLOWER here (WHY?) so we don't use it if parallelevaluate: inversionevalfunc = greensinversion.inversion.parallelperforminversionsteps OpenCL_CTX = greensconvolution_params.get_opencl_context( ) #greensinversion.inversion.Get_OpenCL_Context() pass else: inversionevalfunc = greensinversion.inversion.serialperforminversionsteps OpenCL_CTX = None pass print("Evaluating curvatures") hires_factor = 2 curvmat = obj.implpart.surfaces[ 0].intrinsicparameterization.interpolate_curvature( obj.implpart.surfaces[0], wfmdict[channel].data.shape[1] / xydownsample, wfmdict[channel].data.shape[0] / xydownsample) # curvmat is uv_channame ny x nx x 2x2 matrix representing the shape operator curvmat_hires = obj.implpart.surfaces[ 0].intrinsicparameterization.interpolate_curvature( obj.implpart.surfaces[0], wfmdict[channel].data.shape[1] * hires_factor // xydownsample, wfmdict[channel].data.shape[0] * hires_factor // xydownsample) # Set unknown curvatures to zero curvmat[np.isnan(curvmat)] = 0.0 curvmat_hires[np.isnan(curvmat_hires)] = 0.0 # These are only nominal physical sizes (in terms of nominal dx and dy of parameterization) curvmat_sizex = dx * wfmdict[channel].data.shape[0] / xydownsample curvmat_sizey = dy * wfmdict[channel].data.shape[1] / xydownsample print("Determining maximum principal curvatures") #maxabs_princcurvs = np.max(np.abs(eigvals_broadcast_nans(curvmat)),2) maxabs_princcurvs = np.max(np.abs(fast2x2evals(curvmat)), 2) print("Evaluating step sizes") stepsizemat = obj.implpart.surfaces[ 0].intrinsicparameterization.interpolate_stepsizes( obj.implpart.surfaces[0], wfmdict[channel].data.shape[1] // xydownsample, wfmdict[channel].data.shape[0] // xydownsample) stepsizemat_hires = obj.implpart.surfaces[ 0].intrinsicparameterization.interpolate_stepsizes( obj.implpart.surfaces[0], wfmdict[channel].data.shape[1] * hires_factor // xydownsample, wfmdict[channel].data.shape[0] * hires_factor // xydownsample) # Fill in invalid stepsizes sith dx,dy ssm_xy_nelem = stepsizemat.shape[0] * stepsizemat.shape[1] ssm_nan_dx = np.isnan(stepsizemat.reshape(ssm_xy_nelem, 2)[:, 0]) stepsizemat.reshape(ssm_xy_nelem, 2)[ssm_nan_dx, 0] = dx ssm_nan_dy = np.isnan(stepsizemat.reshape(ssm_xy_nelem, 2)[:, 1]) stepsizemat.reshape(ssm_xy_nelem, 2)[ssm_nan_dx, 1] = dy ssm_hires_xy_nelem = stepsizemat_hires.shape[0] * stepsizemat_hires.shape[1] ssm_hires_nan_dx = np.isnan( stepsizemat_hires.reshape(ssm_hires_xy_nelem, 2)[:, 0]) stepsizemat_hires.reshape(ssm_hires_xy_nelem, 2)[ssm_hires_nan_dx, 0] = dx / hires_factor ssm_hires_nan_dy = np.isnan( stepsizemat_hires.reshape(ssm_hires_xy_nelem, 2)[:, 1]) stepsizemat_hires.reshape(ssm_hires_xy_nelem, 2)[ssm_hires_nan_dy, 1] = dy / hires_factor minimal_curvature = maxabs_princcurvs < 1.0 / (20 * reflectors[0][0]) nominal_scaling = ( (np.abs((stepsizemat[:, :, 0] - dx) / dx) < 0.05) & # less than 5% scaling error using nominal scaling factors (np.abs((stepsizemat[:, :, 1] - dy) / dy) < 0.05)) use_flat = minimal_curvature & nominal_scaling # scaled tikparam #raise ValueError("foo!") #z_reference=reflectors[-1][0] # z coordinate of shallowest reflectors (recall reflectors are deepest first) #scaledtikparams=greensinversion.scale_tikparam(tikparam,z_reference,reflectors) #if tikparam is not None: # # tikparam scaled diagnostic plot (multi-step) # pl.figure(nextfignum) # pl.clf() # for inversioncnt in range(len(inversions)): # pl.plot(inverses[inversioncnt][1] * (tikparam/scaledtikparams[inversioncnt])) # * z_values[inversioncnt]/z_reference) # pass # pl.xlabel('Scaled singular value index') # pl.ylabel('Magnitude') # nextfignum+=1 # pass fullinverse = np.zeros( (len(reflectors) + 1, wfmdict[channel].data.shape[1] // xydownsample, wfmdict[channel].data.shape[0] // xydownsample), dtype='d') fullinverse_x_bnd = IniVal[0] - Step[0] * xydownsample / 2.0 + np.arange( DimLen[0] // xydownsample + 1, dtype='d') * Step[0] * xydownsample fullinverse_y_bnd = IniVal[1] - Step[1] * xydownsample / 2.0 + np.arange( DimLen[1] // xydownsample + 1, dtype='d') * Step[1] * xydownsample flat_tile = [ use_flat[yidx:(yidx + ny), xidx:(xidx + nx)].all() for (yidx, xidx) in minyminx_corners ] valid_tile = [ not ((np.isnan(curvmat[yidx:(yidx + ny), xidx:(xidx + nx), :, :])).any()) for (yidx, xidx) in minyminx_corners ] if channel_weights is None: # Assume all tiles have nonzero weights weighted_tile = [True for (yidx, xidx) in minyminx_corners] pass else: # True only for tiles with a non-zero weight weights_data = wfmdict[ channel_weights].data[::xydownsample, ::xydownsample].T weighted_tile = [ (weights_data[yidx:(yidx + ny), xidx:(xidx + nx)] > 0.0).any() for (yidx, xidx) in minyminx_corners ] pass #eval_linelength_avgcurvature_mirroredbox = lambda boxu1,boxv1,boxu2,boxv2,u1,v1,u2,v2: obj.implpart.surfaces[0].intrinsicparameterization.linelength_avgcurvature_mirroredbox_meshbased(obj.implpart.surfaces[0],curvmat_hires,stepsizemat_hires,obj.implpart.surfaces[0].intrinsicparameterization.lowerleft_meaningfulunits[0],obj.implpart.surfaces[0].intrinsicparameterization.lowerleft_meaningfulunits[1],curvmat_sizex*1.0/curvmat_hires.shape[1],curvmat_sizey*1.0/curvmat_hires.shape[0],boxu1,boxv1,boxu2,boxv2,dx,dy,u1,v1,u2,v2) #boxu1=-0.000447803 #boxv1=-0.000447803 #boxu2=0.021643787 #boxv2=0.023434997 #u1=-0.00014926799999999998 #v1=-0.00014926799999999998 #u2=-0.001343408 #v2=-0.000746338 #if np.isnan(eval_linelength_avgcurvature_mirroredbox(boxu1,boxv1,boxu2,boxv2,u1,v1,u2,v2)).any(): # raise ValueError("NAN") #break linelength_avgcurvature_mirroredbox_meshbased_c_one print("Defining flat surface inversion") # (rowscaling,flashsourcecolumnscaling,flashsourcevecs,reflectorcolumnscaling,reflectorsourcevecs,depths,tstars,conditions,prevconditions,prevscaledconditions,rowselects,inversions,inversionsfull,inverses,nresults) flat_inversion = define_flat_inversion(gi_params, flat_gi_grid, num_sources_y, num_sources_x) if do_singlestep_bool: print("Generating single-step inversion") # should be define_flat_inversion here probably (ss_rowselects, ss_inversions, ss_inversionsfull, ss_inverses, ss_nresults) = greensinversion.generatesinglestepinversion( rowscaling, flashsourcecolumnscaling, flashsourcevecs, reflectorcolumnscaling, reflectorsourcevecs, tstars, ny, nx, trange, depths) pass nextfignum = 1 # tikparam diagnostic plots (multi-step) if False: pl.figure(nextfignum) pl.clf() for inversioncnt in range(len(inversions)): pl.plot(inverses[inversioncnt][1]) pass pl.xlabel('Singular value index') pl.ylabel('Magnitude') nextfignum += 1 if do_singlestep_bool: pl.figure(nextfignum) pl.clf() pl.plot(ss_inverses[0][1]) pl.xlabel('Singular value index (single step)') pl.ylabel('Magnitude') nextfignum += 1 pass pass print("Iterating over %d tiles" % (len(minyminx_corners))) for tile_idx in range(len(minyminx_corners)): (yidx, xidx) = minyminx_corners[tile_idx] print("Tile %d/%d" % (tile_idx, len(minyminx_corners))) #if tile_idx==27: # raise ValueError("FOO!") inputmat = inputmats_holesfilled[tile_idx] if (flat_tile[tile_idx] ) or not valid_tile[tile_idx] or not weighted_tile[ tile_idx]: # or tile idx > 75 or tile_idx != 27 # or tile_idx < 26 or tile_idx > 28 (ny, nx, y, x, ygrid, xgrid, y_bnd, x_bnd) = flat_gi_grid (rowscaling, flashsourcecolumnscaling, flashsourcevecs, reflectorcolumnscaling, reflectorsourcevecs, depths, tstars, conditions, prevconditions, prevscaledconditions, rowselects, inversions, inversionsfull, inverses, nresults) = flat_inversion print("inverting with flat_inversion") pass elif valid_tile[tile_idx]: # build grid at this location gi_grid = build_gi_grid(dy, maxy, dx, maxx, firstcentery=IniVal[1] + yidx * dy, firstcenterx=IniVal[0] + xidx * dx) (ny, nx, y, x, ygrid, xgrid, y_bnd, x_bnd) = gi_grid try: (rowscaling, flashsourcecolumnscaling, flashsourcevecs, reflectorcolumnscaling, reflectorsourcevecs, depths, tstars, conditions, prevconditions, prevscaledconditions, rowselects, inversions, inversionsfull, inverses, nresults) = define_curved_inversion( gi_params, gi_grid, obj, curvmat[yidx:(yidx + ny), xidx:(xidx + nx)], stepsizemat[yidx:(yidx + ny), xidx:(xidx + nx)], curvmat_hires, stepsizemat_hires, curvmat_sizex, curvmat_sizey, num_sources_y=num_sources_y, num_sources_x=num_sources_x) pass except NotANumberError as e: sys.stderr.write( "WARNING: Found NAN in sourcevecs... using flat (tile idx %d; yidx=%d, xidx=%d): %s\n" % (tile_idx, yidx, xidx, str(e))) (ny, nx, y, x, ygrid, xgrid, y_bnd, x_bnd) = flat_gi_grid (rowscaling, flashsourcecolumnscaling, flashsourcevecs, reflectorcolumnscaling, reflectorsourcevecs, depths, tstars, conditions, prevconditions, prevscaledconditions, rowselects, inversions, inversionsfull, inverses, nresults) = flat_inversion #raise #!!! pass print("inverting with curved_inversion") pass else: continue (inversioncoeffs_list, errs_list, tikparams_list) = inversionevalfunc( OpenCL_CTX, rowselects, inversions, inversionsfull, inverses, nresults, [inputmat], tikparam) fullinverse[:, yidx:(yidx + ny), xidx:(xidx + nx)] += greensinversion.buildconcreteinverse( inversioncoeffs_list[0], reflectors, ygrid, xgrid, y_bnd, x_bnd, ny, nx, num_sources_y, num_sources_x) * contributionprofiles[tile_idx] pass # raise ValueError("Debugging!") print("Performing assumed-flat inversion") print("Iterating over %d tiles" % (len(minyminx_corners))) flatfullinverse = np.zeros( (len(reflectors) + 1, wfmdict[channel].data.shape[1] // xydownsample, wfmdict[channel].data.shape[0] // xydownsample), dtype='d') for tile_idx in range(len(minyminx_corners)): (yidx, xidx) = minyminx_corners[tile_idx] print("Tile %d/%d" % (tile_idx, len(minyminx_corners))) inputmat = inputmats_holesfilled[tile_idx] (ny, nx, y, x, ygrid, xgrid, y_bnd, x_bnd) = flat_gi_grid (rowscaling, flashsourcecolumnscaling, flashsourcevecs, reflectorcolumnscaling, reflectorsourcevecs, depths, tstars, conditions, prevconditions, prevscaledconditions, rowselects, inversions, inversionsfull, inverses, nresults) = flat_inversion (inversioncoeffs_list, errs_list, tikparams_list) = inversionevalfunc( OpenCL_CTX, rowselects, inversions, inversionsfull, inverses, nresults, [inputmat], tikparam) flatfullinverse[:, yidx:(yidx + ny), xidx:( xidx + nx)] += greensinversion.buildconcreteinverse( inversioncoeffs_list[0], reflectors, ygrid, xgrid, y_bnd, x_bnd, ny, nx, num_sources_y=num_sources_y, num_sources_x=num_sources_x) * contributionprofiles[tile_idx] pass if do_singlestep_bool: (ss_inversioncoeffs_list, ss_errs_list, ss_tikparams_list) = inversionevalfunc( OpenCL_CTX, ss_rowselects, ss_inversions, ss_inversionsfull, ss_inverses, ss_nresults, inputmats_holesfilled, tikparam) ss_fullinverse = np.zeros( (len(reflectors) + 1, wfmdict[channel].data.shape[1] // xydownsample, wfmdict[channel].data.shape[0] // xydownsample), dtype='d') for tile_idx in range(len(minyminx_corners)): (yidx, xidx) = minyminx_corners[tile_idx] ss_fullinverse[:, yidx:(yidx + ny), xidx:( xidx + nx)] += greensinversion.buildconcreteinverse( ss_inversioncoeffs_list[tile_idx], reflectors, ygrid, xgrid, y_bnd, x_bnd, ny, nx, num_sources_y, num_sources_x) * contributionprofiles[tile_idx] pass # for tile_idx in range(len(minyminx_corners)): # (yidx,xidx)=minyminx_corners[tile_idx] # # # (ss_inversioncoeffs,ss_residual,errs,ss_tikparams)=greensinversion.performinversionsteps(ss_rowselects,ss_inversions,ss_inversionsfull,ss_inverses,ss_nresults,wfmdict[channel].data[(xidx*xydownsample):((xidx+nx)*xydownsample):xydownsample,(yidx*xydownsample):((yidx+ny)*xydownsample):xydownsample,startframe:endframe].transpose((2,1,0)),tikparam) # transpose to convert dataguzzler axis ordering (x,y,t) to greensinversion ordering (t,y,x) # # # ss_concreteinverse=greensinversion.buildconcreteinverse(ss_inversioncoeffs,reflectors,ygrid,xgrid,y_bnd,x_bnd,ny,nx) # # concreteinverse is (len(reflectors)+1,ny,nx)... first layer is surface # # ... accumulate contributions of each tile to full inverse # ss_fullinverse[:,yidx:(yidx+ny),xidx:(xidx+nx)] += ss_concreteinverse*contributionprofiles[tile_idx] # pass pass if tikparam is None: outpng_fname = "%s_greensinversion.png" % (inputfile_basename) movieoutdirname = "%s_greensinversion_movie/" % (inputfile_basename) movieoutfilename = "%s_greensinversion_movie_depth_%%05.2f.png" % ( inputfile_basename) outpngflat_fname = "%s_greensinversionflat.png" % (inputfile_basename) movieoutflatfilename = "%s_greensinversionflat_movie_depth_%%05.2f.png" % ( inputfile_basename) pass else: outpng_fname = "%s_greensinversion_tik_%g.png" % (inputfile_basename, tikparam) movieoutdirname = "%s_greensinversion_tik_%g_movie/" % ( inputfile_basename, tikparam) movieoutfilename = "%s_greensinversion_tik_%g_movie_depth_%%05.2f.png" % ( inputfile_basename, tikparam) outpngflat_fname = "%s_greensinversionflat_tik_%g.png" % ( inputfile_basename, tikparam) movieoutflatfilename = "%s_greensinversionflat_tik_%g_movie_depth_%%05.2f.png" % ( inputfile_basename, tikparam) pass (fig, subplots, images) = greensinversion.plotconcreteinverse( nextfignum, dc_numplotrows_int, dc_numplotcols_int, saturation_map, fullinverse, reflectors, -10000.0, 30000.0, fullinverse_y_bnd, fullinverse_x_bnd, num_sources_y, num_sources_x) nextfignum += 1 outpng_href = dc_value.hrefvalue(quote(outpng_fname), _dest_href) fig.savefig(outpng_href.getpath()) reslist.append((("dc:greensinversion_figure", { "tikparam": str(tikparam) }), outpng_href)) (fig, subplots, images) = greensinversion.plotconcreteinverse( nextfignum, dc_numplotrows_int, dc_numplotcols_int, saturation_map, flatfullinverse, reflectors, -10000.0, 30000.0, fullinverse_y_bnd, fullinverse_x_bnd, num_sources_y, num_sources_x) nextfignum += 1 outpngflat_href = dc_value.hrefvalue(quote(outpngflat_fname), _dest_href) fig.savefig(outpngflat_href.getpath()) reslist.append((("dc:greensinversion_figure", { "tikparam": str(tikparam) }), outpngflat_href)) movieoutdirhref = dc_value.hrefvalue(quote(movieoutdirname), contexthref=_dest_href) (nextfignum, plots, images, plothrefs, depths) = greensinversion.inversion.plotconcreteinversemovie( nextfignum, movieoutdirhref, movieoutfilename, saturation_map, fullinverse, reflectors, -10000.0, 30000.0, fullinverse_y_bnd, fullinverse_x_bnd, num_sources_y, num_sources_x, dpi=300) for cnt in range(len(plothrefs)): reslist.append((("dc:greensinversion_movie_frame", { "tikparam": str(tikparam), "depth": str(depths[cnt]) }), plothrefs[cnt])) pass (nextfignum, plots, images, plotflathrefs, depths) = greensinversion.inversion.plotconcreteinversemovie( nextfignum, movieoutdirhref, movieoutflatfilename, saturation_map, flatfullinverse, reflectors, -10000.0, 30000.0, fullinverse_y_bnd, fullinverse_x_bnd, num_sources_y, num_sources_x, dpi=300) for cnt in range(len(plotflathrefs)): reslist.append((("dc:greensinversionflat_movie_frame", { "tikparam": str(tikparam), "depth": str(depths[cnt]) }), plotflathrefs[cnt])) pass if do_singlestep_bool: (ss_fig, ss_subplots, ss_images) = greensinversion.plotconcreteinverse( nextfignum, dc_numplotrows_int, dc_numplotcols_int, saturation_map, ss_fullinverse, reflectors, -10000.0, 30000.0, fullinverse_y_bnd, fullinverse_x_bnd, num_sources_y, num_sources_x) nextfignum += 1 if tikparam is None: ss_outpng_fname = "%s_ss_greensinversion.png" % ( inputfile_basename) ss_movieoutdirname = "%s_ss_greensinversion_movie/" % ( inputfile_basename) ss_movieoutfilename = "%s_ss_greensinversion_movie_depth_%%05.2f.png" % ( inputfile_basename) pass else: ss_outpng_fname = "%s_ss_greensinversion_tik_%g.png" % ( inputfile_basename, tikparam) ss_movieoutdirname = "%s_ss_greensinversion_tik_%g_movie/" % ( inputfile_basename, tikparam) ss_movieoutfilename = "%s_ss_greensinversion_tik_%g_movie_depth_%%05.2f.png" % ( inputfile_basename, tikparam) pass ss_outpng_href = dc_value.hrefvalue(quote(ss_outpng_fname), _dest_href) ss_fig.savefig(ss_outpng_href.getpath()) reslist.append((("dc:greensinversion_singlestep_figure", { "tikparam": str(tikparam) }), ss_outpng_href)) ss_movieoutdirhref = dc_value.hrefvalue(quote(ss_movieoutdirname), contexthref=_dest_href) (nextfignum, ss_plots, ss_images, ss_plothrefs, ss_depths) = greensinversion.inversion.plotconcreteinversemovie( nextfignum, ss_movieoutdirhref, ss_movieoutfilename, saturation_map, ss_fullinverse, reflectors, -10000.0, 30000.0, fullinverse_y_bnd, fullinverse_x_bnd, num_sources_y, num_sources_x, resolution=300) for cnt in range(len(ss_plothrefs)): reslist.append((("dc:ss_greensinversion_movie_frame", { "tikparam": str(tikparam), "depth": str(ss_depths[cnt]) }), ss_plothrefs[cnt])) pass pass outwfmdict = {} outwfmdict[dc_cadmodel_channel_str] = copy.deepcopy( wfmdict[dc_cadmodel_channel_str]) SplitTextureChans = dgm.GetMetaDatumWIStr(wfmdict[dc_cadmodel_channel_str], "TextureChans", "").split("|") PrefixedTextureChans = "|".join([ dc_prefix_str + TexChanPrefix + TexChan for TexChan in SplitTextureChans ]) PrefixedFlatTextureChans = "|".join([ dc_prefix_str + "_flat" + TexChanPrefix + TexChan for TexChan in SplitTextureChans ]) gi_3d = dg.wfminfo() #gi_3d.Name=dc_prefix_str+dc_cadmodel_channel_str gi_3d.Name = "Proj" + dc_prefix_str + TexChanPrefix + dc_cadmodel_channel_str gi_3d.dimlen = np.array((1, ), dtype='i8') gi_3d.data = np.array((1, ), dtype='f') dgm.AddMetaDatumWI(gi_3d, dgm.MetaDatum("VRML97GeomRef", dc_cadmodel_channel_str)) dgm.AddMetaDatumWI(gi_3d, dgm.MetaDatum("X3DGeomRef", dc_cadmodel_channel_str)) #texchanprefix=gi_3d.Name[:gi_3d.Name.find(dc_unprefixed_texname_str)] dgm.AddMetaDatumWI( gi_3d, dgm.MetaDatum("TexChanPrefix", dc_prefix_str + TexChanPrefix)) dgm.AddMetaDatumWI(gi_3d, dgm.MetaDatum("TextureChans", PrefixedTextureChans)) outwfmdict[gi_3d.Name] = gi_3d giflat_3d = dg.wfminfo() #gi_3d.Name=dc_prefix_str+dc_cadmodel_channel_str giflat_3d.Name = "Proj" + dc_prefix_str + "flat_" + TexChanPrefix + dc_cadmodel_channel_str giflat_3d.dimlen = np.array((1, ), dtype='i8') giflat_3d.data = np.array((1, ), dtype='f') dgm.AddMetaDatumWI(giflat_3d, dgm.MetaDatum("VRML97GeomRef", dc_cadmodel_channel_str)) dgm.AddMetaDatumWI(giflat_3d, dgm.MetaDatum("X3DGeomRef", dc_cadmodel_channel_str)) #texchanprefix=giflat_3d.Name[:gi_3d.Name.find(dc_unprefixed_texname_str)] dgm.AddMetaDatumWI( giflat_3d, dgm.MetaDatum("TexChanPrefix", dc_prefix_str + "_flat" + TexChanPrefix)) dgm.AddMetaDatumWI(giflat_3d, dgm.MetaDatum("TextureChans", PrefixedFlatTextureChans)) outwfmdict[giflat_3d.Name] = giflat_3d #outwfm_flat.Name=dc_prefix_str+dc_inversion_channel_str+"flat" outwfm = dg.wfminfo() #outwfm.Name="greensinversion" outwfm.Name = dc_prefix_str + dc_inversion_channel_str outwfmdict[outwfm.Name] = outwfm outwfm_flat = dg.wfminfo() #outwfm.Name="greensinversion" outwfm_flat.Name = dc_prefix_str + "_flat" + dc_inversion_channel_str outwfmdict[outwfm_flat.Name] = outwfm_flat # Shift IniVals according to xydownsample: # IniVal[0] is X coordinate of center of corner pixel of undownsampled image # IniVal[0] is X coordinate of center of corner pixel downsampled image # but that pixel is twice as big, so the corner of the image itself # has changed! dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("IniVal1", IniVal[0])) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("IniVal2", IniVal[1])) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("Step1", XStepMeters * xydownsample)) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("Step2", YStepMeters * xydownsample)) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("Coord1", Coord[0])) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("Coord2", Coord[1])) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("Units1", Units[0])) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("Units2", Units[1])) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("IniVal3", 0.0)) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("Step3", 1.0)) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("Coord3", "Depth Index")) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("Units3", "unitless")) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("AmplCoord", "Heating intensity")) dgm.AddMetaDatumWI(outwfm, dgm.MetaDatum("AmplUnits", "J/m^2")) # Copy landmark metadata LandmarkMD = [ MDName for MDName in list(wfmdict[channel].MetaData.keys()) if MDName.startswith("LANDMARK_") ] for LandmarkName in LandmarkMD: dgm.AddMetaDatumWI( outwfm, copy.deepcopy(wfmdict[channel].MetaData[LandmarkName])) pass outwfm_flat.MetaData = copy.deepcopy(outwfm.MetaData) if channel_weights is not None: #outwfm_weights=copy.deepcopy(wfmdict[channel_weights])#dg.wfminfo() #outwfm_weights.Name="greensinversion_weights" outwfm_weights = dg.wfminfo() outwfm_weights.Name = dc_prefix_str + dc_inversion_channel_str + "_weights" outwfm_weights.data = wfmdict[ channel_weights].data[::xydownsample, ::xydownsample] outwfm_weights.dimlen = np.array(outwfm_weights.data.shape) outwfm_weights.ndim = 2 outwfm_weights.MetaData = copy.deepcopy(outwfm.MetaData) dgm.AddMetaDatumWI(outwfm_weights, dgm.MetaDatum("AmplCoord", "Weighting")) dgm.AddMetaDatumWI(outwfm_weights, dgm.MetaDatum("AmplUnits", "Unitless")) outwfmdict[outwfm_weights.Name] = outwfm_weights pass if do_singlestep_bool: ss_outwfm = copy.deepcopy(outwfm) ss_outwfm.Name = "ss_greensinversion" outwfmdict[ss_outwfm.Name] = ss_outwfm pass # dgs file is written in (X,Y,Z) fortran order, so we write # dimlen in reverse order and transpose the data outwfm.ndim = 3 outwfm.dimlen = np.array(fullinverse.shape[::-1]) outwfm.data = fullinverse.transpose().astype(np.float32) outwfm.NeedData = False outwfm.NeedMetaData = False outwfm.HaveData = True outwfm.HaveMetaData = True outwfm_flat.ndim = 3 outwfm_flat.dimlen = np.array(flatfullinverse.shape[::-1]) outwfm_flat.data = flatfullinverse.transpose().astype(np.float32) outwfm_flat.NeedData = False outwfm_flat.NeedMetaData = False outwfm_flat.HaveData = True outwfm_flat.HaveMetaData = True outwfm_saturationmap = dg.wfminfo() outwfm_saturationmap.Name = "saturation_map" outwfmdict[outwfm_saturationmap.Name] = outwfm_saturationmap outwfm_saturationmap.dimlen = np.array(saturation_map.shape[::-1]) outwfm_saturationmap.data = saturation_map.transpose().astype(np.float32) outwfm_saturationmap.ndim = outwfm_saturationmap.dimlen.shape[0] outwfm_saturationmap.NeedData = False outwfm_saturationmap.NeedMetaData = False outwfm_saturationmap.HaveData = True outwfm_saturationmap.HaveMetaData = True outwfm_saturationmap.MetaData = copy.deepcopy(outwfm.MetaData) if do_singlestep_bool: ss_outwfm.ndim = 3 ss_outwfm.dimlen = np.array(ss_fullinverse.shape[::-1]) ss_outwfm.data = ss_fullinverse.transpose().astype(np.float32) ss_outwfm.NeedData = False ss_outwfm.NeedMetaData = False ss_outwfm.HaveData = True ss_outwfm.HaveMetaData = True pass if tikparam is None: outdgs_fname = "%s_greensinversion.dgs" % (inputfile_basename) pass else: outdgs_fname = "%s_greensinversion_tik_%g.dgs" % (inputfile_basename, tikparam) pass outdgs_href = dc_value.hrefvalue(quote(outdgs_fname), _dest_href) dgf.savesnapshot(outdgs_href.getpath(), outwfmdict) reslist.append((("dc:greensinversion_dgsfile", { "tikparam": str(tikparam) }), outdgs_href)) if do_singlestep_bool: pass # # greensconvolution_params.get_opencl_context() # tile_idx=14 # (yidx,xidx)=minyminx_corners[tile_idx] # # inputmats=[wfmdict[channel].data[(xidx*xydownsample):((xidx+nx)*xydownsample):xydownsample,(yidx*xydownsample):((yidx+ny)*xydownsample):xydownsample,startframe:endframe].transpose((2,1,0))] # greeninversion.inversion.parallelperforminversionsteps(greensconvolution_params.OpenCL_CTX,rowselects,inversions,inversionsfull,inverses,nresults,inputmats,None) return reslist