예제 #1
0
def compare_faster():
    variables = collections.OrderedDict()
    variables['alpha'] = dict(min=-180,
                              max=180,
                              description="angle",
                              resolution=5,
                              units='deg',
                              units_display='deg')
    variables['r'] = dict(min=3,
                          max=5,
                          description="distance",
                          resolution=0.1,
                          units='m',
                          units_display='cm')
    # this will fail if precision is float32
    gh = GridHelper(variables, precision='float64')
    val_fast = gh.create_new()
    val_fast.fill(0)
    val_slow = gh.create_new()
    val_slow.fill(0)

    od = dtu.get_output_dir_for_test()

    F = 1

    alpha0 = 7
    # r0 = 4
    r0 = 4.1
    w0 = 1.
    value = dict(alpha=alpha0, r=r0)
    gh.add_vote(val_slow, value, w0, F)

    assert_equal(np.sum(val_slow > 0), 9)

    values = np.zeros((2, 1))
    values[0, 0] = alpha0
    values[1, 0] = r0
    weights = np.zeros(1)
    weights[0] = w0
    gh.add_vote_faster(val_fast, values, weights, F)

    assert_equal(np.sum(val_fast > 0), 9)

    d = grid_helper_plot(gh, val_slow)
    fn = os.path.join(od, 'compare_faster_slow.jpg')
    dtu.write_data_to_file(d.get_png(), fn)

    d = grid_helper_plot(gh, val_fast)
    fn = os.path.join(od, 'compare_faster_fast.jpg')
    dtu.write_data_to_file(d.get_png(), fn)

    D = val_fast - val_slow
    diff = np.max(np.abs(D))
    print('diff: %r' % diff)
    if diff > 1e-8:
        print(dtu.indent(array_as_string_sign(val_fast), 'val_fast '))
        print(dtu.indent(array_as_string_sign(val_slow), 'val_slow '))
        print(dtu.indent(array_as_string_sign(D), 'Diff '))
        print('non zero val_fast: %s' % val_fast[val_fast > 0])
        print('non zero val_slow: %s' % val_slow[val_slow > 0])

    assert_almost_equal(val_fast, val_slow)
예제 #2
0
    def generate_measurement_likelihood_faster(self, segments: List[Segment]):
        with dtu.timeit_clock(f"get_compat_representation_obs ({len(segments)} segments)"):
            rep_obs = get_compat_representation_obs(segments)
            rep_map = self.rep_map

        with dtu.timeit_clock(
            f"generate_votes_faster (map: {len(rep_map.weight)}, obs: {len(rep_obs.weight)})"
        ):
            votes = generate_votes_faster(rep_map, rep_obs)

            if self.bounds_theta_deg is not None:
                weight = votes.weight.copy()
                theta_min = np.deg2rad(self.bounds_theta_deg[0])
                theta_max = np.deg2rad(self.bounds_theta_deg[1])
                num_outside = 0
                for i in range(weight.shape[0]):

                    theta = votes.theta[i]

                    if not (theta_min <= theta <= theta_max):
                        weight[i] = 0
                        num_outside += 1

                # print('Removed %d of %d because outside box' % (num_outside, len(weight)))
                votes = remove_zero_weight(votes._replace(weight=weight))

        with dtu.timeit_clock(f"compute pos iterative ({len(votes.weight)})"):
            locations = self._localization_template.coords_from_position_orientation(votes.p, votes.theta)

            num = len(locations)
            est = np.zeros((2, num))
            for i in range(2):
                v = list(self.variables)[i]
                est[i, :] = locations[v]

        F = self.F

        compare = False

        with dtu.timeit_clock(f"add voting faster ({len(votes.weight)})"):
            measurement_likelihood = self.grid_helper.create_new("float32")
            measurement_likelihood.fill(0)

            if compare:
                counts1 = np.zeros(measurement_likelihood.shape, dtype="int")
            else:
                counts1 = None

            added = self.grid_helper.add_vote_faster(
                measurement_likelihood, est, votes.weight, F=F, counts=counts1
            )

        #             print('Counts (new):\n'  + array_as_string(counts1, lambda x: ' %3d' % x))

        if compare:
            with dtu.timeit_clock("add voting (traditional)"):
                measurement_likelihood_classic = self.grid_helper.create_new("float32")
                measurement_likelihood_classic.fill(0)
                hit = miss = 0
                counts2 = np.zeros(measurement_likelihood.shape, dtype="int")
                for i in range(len(locations)):
                    loc = locations[i]
                    weight = votes.weight[i]
                    value = dict((k, loc[k]) for k in self.variables)

                    added = self.grid_helper.add_vote(
                        measurement_likelihood_classic, value, weight, F=F, counts=counts2
                    )

                    hit += added > 0
                    miss += added == 0

                #             dtu.logger.debug('tradoitional hit: %s miss : %s' % (hit, miss))
                #             print('Counts (old):\n'  + array_as_string(counts2, lambda x: ' %3d' % x))
                #
                diff = measurement_likelihood - measurement_likelihood_classic

                deviation = np.max(np.abs(diff))
                if deviation > 1e-6:
                    s = array_as_string_sign(diff)
                    print(f"max deviation: {deviation}")
                    print(s)

        return measurement_likelihood
예제 #3
0
def compare_faster():
    variables = {}
    variables["alpha"] = dict(min=-180,
                              max=180,
                              description="angle",
                              resolution=5,
                              units="deg",
                              units_display="deg")
    variables["r"] = dict(min=3,
                          max=5,
                          description="distance",
                          resolution=0.1,
                          units="m",
                          units_display="cm")
    # this will fail if precision is float32
    gh = GridHelper(variables, precision="float64")
    val_fast = gh.create_new()
    val_fast.fill(0)
    val_slow = gh.create_new()
    val_slow.fill(0)

    od = dtu.get_output_dir_for_test()

    F = 1

    alpha0 = 7
    # r0 = 4
    r0 = 4.1
    w0 = 1.0
    value = dict(alpha=alpha0, r=r0)
    gh.add_vote(val_slow, value, w0, F)

    assert_equal(np.sum(val_slow > 0), 9)

    values = np.zeros((2, 1))
    values[0, 0] = alpha0
    values[1, 0] = r0
    weights = np.zeros(1)
    weights[0] = w0
    gh.add_vote_faster(val_fast, values, weights, F)

    assert_equal(np.sum(val_fast > 0), 9)

    d = grid_helper_plot(gh, val_slow)
    fn = os.path.join(od, "compare_faster_slow.jpg")
    dtu.write_data_to_file(d.get_png(), fn)

    d = grid_helper_plot(gh, val_fast)
    fn = os.path.join(od, "compare_faster_fast.jpg")
    dtu.write_data_to_file(d.get_png(), fn)

    D = val_fast - val_slow
    diff = np.max(np.abs(D))
    print(f"diff: {diff!r}")
    if diff > 1e-8:
        print(dtu.indent(array_as_string_sign(val_fast), "val_fast "))
        print(dtu.indent(array_as_string_sign(val_slow), "val_slow "))
        print(dtu.indent(array_as_string_sign(D), "Diff "))
        print(f"non zero val_fast: {val_fast[val_fast > 0]}")
        print(f"non zero val_slow: {val_slow[val_slow > 0]}")

    assert_almost_equal(val_fast, val_slow)