delta = params['delta'] return (s / (n + g + delta))**(1 / (1 - alpha)) # create a new model object model = growth.SolowModel(cobb_douglas_output, marginal_product_capital, equation_of_motion_capital, solow_jacobian) # create a dictionary of steady state expressions steady_state_funcs = {'k_star':analytic_k_star} # pass it as an argument to the set_steady_state_functions method model.steady_state.set_functions(steady_state_funcs) # calibrate the model and compute steady state values growth.calibrate_cobb_douglas(model, 'GBR') # create a new figure fig_kwargs = {'figsize':(12,8)} # irf for shock to alpha model.plot_impulse_response(variables='all', param='n', shock=0.5, T=100, color='b', year=2013, kind='per_capita', log=True, reset=True, **fig_kwargs)
return (s / (n + g + delta))**(1 / (1 - alpha)) # create a new model object model = growth.SolowModel(cobb_douglas_output, marginal_product_capital, equation_of_motion_capital, solow_jacobian) # create a dictionary of steady state expressions steady_state_funcs = {'k_star': analytic_k_star} # pass it as an argument to the set_steady_state_functions method model.steady_state.set_functions(steady_state_funcs) # calibrate the model and compute steady state values growth.calibrate_cobb_douglas(model, 'GBR') # create a new figure fig_kwargs = {'figsize': (12, 8)} # irf for shock to delta model.plot_impulse_response(variables='all', param='delta', shock=1.5, T=100, color='b', year=2013, kind='efficiency_units', log=False, reset=True, **fig_kwargs)