예제 #1
0
    def testStatsEntryId_VaryStringDimensions(self):
        """Ensures StatsEntries with different str dimensions get different ids."""
        entry1 = stats_values.StatsStoreEntry(
            process_id="test_process",
            metric_name="test_metric",
            metric_value=stats_values.StatsStoreValue(
                value_type=rdf_stats.MetricMetadata.ValueType.INT,
                fields_values=[
                    stats_values.StatsStoreFieldValue(
                        field_type=rdf_stats.MetricFieldDefinition.FieldType.
                        STR,
                        str_value="dim1"),
                    stats_values.StatsStoreFieldValue(
                        field_type=rdf_stats.MetricFieldDefinition.FieldType.
                        STR,
                        str_value="dim2")
                ],
                int_value=42),
            timestamp=_one_second_timestamp)

        # Clone entry1 and change a single dimension value.
        entry2 = stats_values.StatsStoreEntry()
        entry2.FromDict(entry1.ToPrimitiveDict())
        entry2.metric_value.fields_values[0].str_value = "dim3"

        self.assertEqual(
            db_utils.GenerateStatsEntryId(entry1),
            b"\xb8'\x1cv\xf9`\x90\xd1\x9d#{\x8a'y\xd8E\x0bx\x1b6f\xe6\x8d\x16\xb95"
            b"\x0011uy\xf9")
        self.assertEqual(
            db_utils.GenerateStatsEntryId(entry2),
            b"\xa4\xcb\x95*\xe4\x8aclM&@\xde\xba\x17\xec\x02\xc6i\xea\xc0\x1a{bQ"
            b"\xabr~w}Z\xb9\x99")
예제 #2
0
    def testStatsEntryId_VaryIntDimensions(self):
        """Ensures StatsEntries with different int dimensions get different ids."""
        entry1 = stats_values.StatsStoreEntry(
            process_id="test_process",
            metric_name="test_metric",
            metric_value=stats_values.StatsStoreValue(
                value_type=rdf_stats.MetricMetadata.ValueType.INT,
                fields_values=[
                    stats_values.StatsStoreFieldValue(
                        field_type=rdf_stats.MetricFieldDefinition.FieldType.
                        INT,
                        int_value=11),
                    stats_values.StatsStoreFieldValue(
                        field_type=rdf_stats.MetricFieldDefinition.FieldType.
                        INT,
                        int_value=12)
                ],
                int_value=42),
            timestamp=_one_second_timestamp)

        # Clone entry1 and change a single dimension value.
        entry2 = stats_values.StatsStoreEntry()
        entry2.FromDict(entry1.ToPrimitiveDict())
        entry2.metric_value.fields_values[0].int_value = 13

        self.assertEqual(
            db_utils.GenerateStatsEntryId(entry1),
            b"pl\xc31\x1a\xf8\xd5\xfe\xe1\xc6\x10gR\x10f\x0c\xb8\xd3\x96_\xa3`\x19"
            b"\xf2\x15\xc5\xa0\x8d\xbbu\xf1&")
        self.assertEqual(
            db_utils.GenerateStatsEntryId(entry2),
            b"L \x1d+\xd5<g\\\xa8\xa4\x97\xdd\xe8^\x88\xac\xc7\xbej\xae\xff\xd5S"
            b"\x10\xce\xec\x82a\xe5_\xe1\x1c")
예제 #3
0
def _GenerateStatsEntriesForMultiDimensionalMetric(process_id, metric_name,
                                                   metadata, timestamp):
    """Generates StatsStoreEntries for the given multi-dimensional metric.

  Args:
    process_id: Process identifier to use for for the generated entries.
    metric_name: Name of the multi-dimensional metric.
    metadata: MetricMetadata for the metric.
    timestamp: Timestamp to use for the generated entries.

  Returns:
    A list of StatsStoreEntries containing current values for the metric's
    dimensions.
  """
    stats_entries = []
    for raw_field_values in stats_collector_instance.Get().GetMetricFields(
            metric_name):
        _ValidateFieldValues(raw_field_values, metadata)
        metric_value = stats_values.StatsStoreValue()
        for i, raw_field_value in enumerate(raw_field_values):
            field_value = stats_values.StatsStoreFieldValue()
            field_value.SetValue(raw_field_value,
                                 metadata.fields_defs[i].field_type)
            metric_value.fields_values.Append(field_value)
        raw_metric_value = stats_collector_instance.Get().GetMetricValue(
            metric_name, fields=raw_field_values)
        metric_value.SetValue(raw_metric_value, metadata.value_type)
        stats_entries.append(
            stats_values.StatsStoreEntry(process_id=process_id,
                                         metric_name=metric_name,
                                         metric_value=metric_value,
                                         timestamp=timestamp))
    return stats_entries
예제 #4
0
    def testStatsEntryId_IgnoreMetricValues(self):
        """Ensures metric values have no influence id generation."""
        int_entry = stats_values.StatsStoreEntry(
            process_id="test_process",
            metric_name="test_metric",
            metric_value=stats_values.StatsStoreValue(
                value_type=rdf_stats.MetricMetadata.ValueType.INT,
                int_value=42),
            timestamp=_one_second_timestamp)
        float_entry = stats_values.StatsStoreEntry(
            process_id="test_process",
            metric_name="test_metric",
            metric_value=stats_values.StatsStoreValue(
                value_type=rdf_stats.MetricMetadata.ValueType.FLOAT,
                float_value=4.2),
            timestamp=_one_second_timestamp)
        # TODO: String gauges are deprecated.
        str_entry = stats_values.StatsStoreEntry(
            process_id="test_process",
            metric_name="test_metric",
            metric_value=stats_values.StatsStoreValue(
                value_type=rdf_stats.MetricMetadata.ValueType.DEPRECATED_STR,
                str_value="foo"),
            timestamp=_one_second_timestamp)
        distribution_entry = stats_values.StatsStoreEntry(
            process_id="test_process",
            metric_name="test_metric",
            metric_value=stats_values.StatsStoreValue(
                value_type=rdf_stats.MetricMetadata.ValueType.DISTRIBUTION,
                distribution_value=rdf_stats.Distribution()),
            timestamp=_one_second_timestamp)

        expected_id = (
            b"\x8e\xf4\xe7\xdb\x03\x01}sB\x97\x98\x957\x18\x02U\xb0\xe6x\x9f"
            b"\x97Xfs/C\xedT\xd3\x89N\xe5")
        self.assertEqual(db_utils.GenerateStatsEntryId(int_entry), expected_id)
        self.assertEqual(db_utils.GenerateStatsEntryId(float_entry),
                         expected_id)
        self.assertEqual(db_utils.GenerateStatsEntryId(str_entry), expected_id)
        self.assertEqual(db_utils.GenerateStatsEntryId(distribution_entry),
                         expected_id)
예제 #5
0
def _GenerateStatsEntryForSingleDimensionalMetric(process_id, metric_name,
                                                  metadata, timestamp):
    """Generates a StatsStoreEntry for the given single-dimensional metric.

  Args:
    process_id: Process identifier to use for for the generated entry.
    metric_name: Name of the single-dimensional metric.
    metadata: MetricMetadata for the metric.
    timestamp: Timestamp to use for the generated entry.

  Returns:
     A StatsStoreEntry containing the current value of the metric.
  """
    raw_metric_value = stats_collector_instance.Get().GetMetricValue(
        metric_name)
    metric_value = stats_values.StatsStoreValue()
    metric_value.SetValue(raw_metric_value, metadata.value_type)
    return stats_values.StatsStoreEntry(process_id=process_id,
                                        metric_name=metric_name,
                                        metric_value=metric_value,
                                        timestamp=timestamp)
예제 #6
0
from grr_response_server import db
from grr_response_server import stats_values

_TEST_PROCESS_ID = "test_process"
_SINGLE_DIM_COUNTER = "single_dim_counter"
_MULTI_DIM_COUNTER = "multi_dim_counter"

# RDF protobufs used for testing.
#
# TODO(user): Refactor rel-db tests so that component-specific test-mixin
# classes do not have to worry about defining attributes/methods that conflict
# with those of other mixin classes.
_single_dim_entry1 = stats_values.StatsStoreEntry(
    process_id=_TEST_PROCESS_ID,
    metric_name=_SINGLE_DIM_COUNTER,
    metric_value=stats_values.StatsStoreValue(
        value_type=rdf_stats.MetricMetadata.ValueType.INT, int_value=42),
    timestamp=rdfvalue.RDFDatetime.FromSecondsSinceEpoch(1))
_single_dim_entry2 = stats_values.StatsStoreEntry(
    process_id=_TEST_PROCESS_ID,
    metric_name=_SINGLE_DIM_COUNTER,
    metric_value=stats_values.StatsStoreValue(
        value_type=rdf_stats.MetricMetadata.ValueType.INT, int_value=42),
    timestamp=rdfvalue.RDFDatetime.FromSecondsSinceEpoch(2))
_single_dim_entry3 = stats_values.StatsStoreEntry(
    process_id=_TEST_PROCESS_ID,
    metric_name=_SINGLE_DIM_COUNTER,
    metric_value=stats_values.StatsStoreValue(
        value_type=rdf_stats.MetricMetadata.ValueType.INT, int_value=42),
    timestamp=rdfvalue.RDFDatetime.FromSecondsSinceEpoch(3))
_multi_dim_entry = stats_values.StatsStoreEntry(
    process_id=_TEST_PROCESS_ID,