예제 #1
0
def portfolio_pnl(portfolio_id: str,
                  start_date: dt.date = None,
                  end_date: dt.date = None,
                  *,
                  source: str = None,
                  real_time: bool = False,
                  request_id: Optional[str] = None) -> pd.Series:
    """
    Returns the PnL of a portfolio
    :param portfolio_id: id of portfolio
    :param start_date: start date for getting pnl
    :param end_date: end date for getting pnl
    :param source: name of function caller
    :param real_time: whether to retrieve intraday data instead of EOD
    :param request_id: server request id
    :return: portfolio pnl values
    """

    reports = GsPortfolioApi.get_reports(portfolio_id)
    performance_report_id = ""
    for report in reports:
        if report.type == ReportType.Portfolio_Performance_Analytics:
            performance_report_id = report.id
    if performance_report_id:
        ppa_report = PerformanceReport.get(performance_report_id)
        data = ppa_report.get_pnl(start_date, end_date)
        df = pd.DataFrame.from_records(data)
        df.set_index(pd.DatetimeIndex(df['date']), inplace=True)
        df.drop(columns=['date'])
        return _extract_series_from_df(df, QueryType.PNL, True)
예제 #2
0
def test_get_performance_report(mocker):
    # mock GsSession
    mocker.patch.object(GsSession.__class__,
                        'default_value',
                        return_value=GsSession.get(Environment.QA, 'client_id',
                                                   'secret'))
    mocker.patch.object(GsSession.current,
                        '_get',
                        return_value=Report(
                            id='PPAID',
                            position_source_type=PositionSourceType.Portfolio,
                            position_source_id='PORTFOLIOID',
                            parameters=None,
                            type=ReportType.Portfolio_Performance_Analytics,
                            status=ReportStatus.done))
    # run test
    response = PerformanceReport.get('PPAID')
    assert response.type == ReportType.Portfolio_Performance_Analytics
예제 #3
0
def short_pnl(report_id: str, *, source: str = None,
              real_time: bool = False, request_id: Optional[str] = None) -> pd.Series:
    """

    PNL from short holdings
    :param report_id: id of performance report
    :param source: name of function caller
    :param real_time: whether to retrieve intraday data instead of EOD
    :param request_id: server request id
    :return: portfolio short pnl
    """
    start_date = DataContext.current.start_time.date()
    end_date = DataContext.current.end_time.date()
    performance_report = PerformanceReport.get(report_id)

    constituent_data = performance_report.get_portfolio_constituents(
        fields=['pnl', 'quantity'], start_date=start_date, end_date=end_date).set_index('date')
    short_leg = constituent_data[constituent_data['quantity'] < 0]['pnl']
    short_leg = short_leg.groupby(level=0).sum()
    return pd.Series(short_leg, name="shortPnl")
예제 #4
0
def normalized_performance(report_id: str,
                           aum_source: str = None,
                           *,
                           source: str = None,
                           real_time: bool = False,
                           request_id: Optional[str] = None) -> pd.Series:
    """
    Returns the Normalized Performance of a performance report based on AUM source
    :param report_id: id of performance report
    :param aum_source: source to normalize pnl from, default is the aum source on your portfolio,
                if no aum source is set on your portfolio the default is gross
    :param source: name of function caller
    :param real_time: whether to retrieve intraday data instead of EOD
    :param request_id: server request id
    :return: portfolio normalized performance

    **Usage**

    Returns the normalized performance of the portfolio based on AUM source.

    If :math:`aum_source` is "Custom AUM":
    We read AUM from custom AUM uploaded to that portfolio and normalize performance based on that exposure

    If :math:`aum_source` is one of: Long, Short, RiskAumSource.Net,
        AumSource.Gross, we take these exposures from the calculated exposures based on daily positions

    :math:`NP(L/S)_{t} = SUM( PNL(L/S)_{t}/ ( EXP(L/S)_{t} ) - cPNL(L/S)_{t-1) )
        if ( EXP(L/S)_{t} ) - cPNL(L/S)_{t-1)) > 0
        else:
            1/ SUM( PNL(L/S)_{t}/ ( EXP(L/S)_{t} ) - cPNL(L/S)_{t-1) )`
    For each leg, short and long, then:
    :math:`NP_{t} = NP(L)_{t} * (EXP(L)_{t} / AUM_{t}) + NP(S)_{t} * (EXP(S)_{t} / AUM_{t}) + 1`

    This takes into account varying AUM and adjusts for exposure change due to PNL

    where :math:`cPNL(L/S)_{t-1}` is your performance reports cumulative long or short PNL at date t-1
    where :math:`PNL(L/S)_{t}` is your performance reports long or short pnl at date t
    where :math:`AUM_{t}` is portfolio exposure on date t
    where :math:`EXP(L/S)_{t}` is the long or short exposure on date t

    """
    start_date = DataContext.current.start_time - relativedelta(1)
    end_date = DataContext.current.end_time

    start_date = start_date.date()
    end_date = end_date.date()

    performance_report = PerformanceReport.get(report_id)
    if not aum_source:
        port = GsPortfolioApi.get_portfolio(
            performance_report.position_source_id)
        aum_source = port.aum_source if port.aum_source else RiskAumSource.Gross
    else:
        aum_source = RiskAumSource(aum_source)

    constituent_data = performance_report.get_portfolio_constituents(
        fields=['assetId', 'pnl', 'quantity', 'netExposure'],
        start_date=start_date,
        end_date=end_date).set_index('date')

    aum_col_name = aum_source.value.lower()
    aum_col_name = f'{aum_col_name}Exposure' if aum_col_name != 'custom aum' else 'aum'

    # Split into long and short and aggregate across dates
    long_side = _return_metrics(
        constituent_data[constituent_data['quantity'] > 0],
        list(constituent_data.index.unique()), "long")
    short_side = _return_metrics(
        constituent_data[constituent_data['quantity'] < 0],
        list(constituent_data.index.unique()), "short")
    # Get aum source data
    if aum_source == RiskAumSource.Custom_AUM:
        custom_aum = pd.DataFrame(
            GsPortfolioApi.get_custom_aum(
                performance_report.position_source_id, start_date, end_date))
        if custom_aum.empty:
            raise MqError(
                f'No custom AUM for portfolio {performance_report.position_source_id} between dates {start_date},'
                f' {end_date}')
        data = pd.DataFrame.from_records(custom_aum).set_index(['date'])
    else:
        data = performance_report.get_many_measures(
            [aum_col_name], start_date, end_date).set_index(['date'])

    long_side = long_side.join(data[[f'{aum_col_name}']], how='inner')
    short_side = short_side.join(data[[f'{aum_col_name}']], how='inner')

    long_side['longRetWeighted'] = (long_side['longMetrics'] - 1) * long_side['exposure'] * \
                                   (1 / long_side[f'{aum_col_name}'])
    short_side['shortRetWeighted'] = (short_side['shortMetrics'] - 1) * short_side['exposure'] *\
                                     (1 / short_side[f'{aum_col_name}'])

    combined = long_side[['longRetWeighted'
                          ]].join(short_side[['shortRetWeighted']],
                                  how='inner')
    combined['normalizedPerformance'] = combined['longRetWeighted'] + combined[
        'shortRetWeighted'] + 1
    return pd.Series(combined['normalizedPerformance'],
                     name="normalizedPerformance").dropna()
예제 #5
0
def normalized_performance(report_id: str,
                           aum_source: str = None,
                           *,
                           source: str = None,
                           real_time: bool = False,
                           request_id: Optional[str] = None) -> pd.Series:
    """
    Returns the Normalized Performance of a performance report based on AUM source
    :param report_id: id of performance report
    :param aum_source: source to normalize pnl from, default is the aum source on your portfolio,
                if no aum source is set on your portfolio the default is gross
    :param source: name of function caller
    :param real_time: whether to retrieve intraday data instead of EOD
    :param request_id: server request id
    :return: portfolio normalized performance

    **Usage**

    Returns the normalized performance of the portfolio based on AUM source.

    If :math:`aum_source` is "Custom AUM":
    We read AUM from custom AUM uploaded to that portfolio and normalize performance based on that exposure

    If :math:`aum_source` is one of: Long, Short, RiskAumSource.Net,
        AumSource.Gross, we take these exposures from the calculated exposures based on daily positions

    :math:`NP_{t} = SUM( PNL_{t}/ ( AUM_{t} ) - cPNL_{t-1) ) if ( AUM_{t} ) - cPNL_{t-1) ) > 0 else:
            1/ SUM( PNL_{t}/ ( AUM_{t} ) - cPNL_{t-1) )`

    This takes into account varying AUM and adjusts for exposure change due to PNL

    where :math:`cPNL_{t-1}` is your performance reports cumulative PNL at date t-1
    where :math:`PNL_{t}` is your performance reports pnl at date t
    where :math:`AUM_{t}` is portfolio exposure on date t


    """
    start_date = DataContext.current.start_date
    end_date = DataContext.current.end_date

    ppa_report = PerformanceReport.get(report_id)
    if not aum_source:
        port = GsPortfolioApi.get_portfolio(ppa_report.position_source_id)
        aum_source = port.aum_source if port.aum_source else RiskAumSource.Net
    else:
        aum_source = RiskAumSource(aum_source)

    aum_col_name = aum_source.value.lower()
    aum_col_name = f'{aum_col_name}Exposure' if aum_col_name != 'custom aum' else 'aum'
    measures = [aum_col_name, 'pnl'
                ] if aum_source != RiskAumSource.Custom_AUM else ['pnl']
    data = ppa_report.get_many_measures(measures, start_date, end_date)
    data.loc[0, 'pnl'] = 0
    data['cumulativePnlT-1'] = data['pnl'].cumsum(axis=0)
    data = pd.DataFrame.from_records(data).set_index(['date'])
    if aum_source == RiskAumSource.Custom_AUM:
        custom_aum = pd.DataFrame(
            GsPortfolioApi.get_custom_aum(ppa_report.position_source_id,
                                          start_date, end_date))
        if custom_aum.empty:
            raise MqError(
                f'No custom AUM for portfolio {ppa_report.position_source_id} between dates {start_date},'
                f' {end_date}')
        custom_aum = pd.DataFrame.from_records(custom_aum).set_index(['date'])
        data = data.join(custom_aum.loc[:, aum_col_name], how='inner')
    if aum_source == RiskAumSource.Short:
        data[f'{aum_col_name}'] = -1 * data[f'{aum_col_name}']
    data['normalizedExposure'] = data[f'{aum_col_name}'] - data[
        'cumulativePnlT-1']
    data[
        'pnlOverNormalizedExposure'] = data['pnl'] / data['normalizedExposure']
    data['normalizedPerformance'] = data['pnlOverNormalizedExposure'].cumsum(
        axis=0) + 1
    data.loc[data.normalizedExposure < 0,
             'normalizedPerformance'] = 1 / data.loc[:,
                                                     'normalizedPerformance']
    return pd.Series(data['normalizedPerformance'],
                     name="normalizedPerformance").dropna()
예제 #6
0
def normalized_performance(report_id: str, leg: str = None, *, source: str = None,
                           real_time: bool = False, request_id: Optional[str] = None) -> pd.Series:
    """
    Returns the Normalized Performance of a performance report based on AUM source
    :param report_id: id of performance report
    :param leg: short or long
    :param source: name of function caller
    :param real_time: whether to retrieve intraday data instead of EOD
    :param request_id: server request id
    :return: portfolio normalized performance

    **Usage**

    Returns the normalized performance of the portfolio.

    :math:`NP(L/S)_{t} = SUM( PNL(L/S)_{t}/ ( EXP(L/S)_{t} ) - cPNL(L/S)_{t-1) )
        if ( EXP(L/S)_{t} ) > 0
        else:
            1/ SUM( PNL(L/S)_{t}/ ( EXP(L/S)_{t} ) - cPNL(L/S)_{t-1) )`
    For each leg, short and long, then:
    :math:`NP_{t} = NP(L)_{t} * SUM(EXP(L)) / SUM(GROSS_EXP) + NP(S)_{t} * SUM(EXP(S)) / SUM(GROSS_EXP) + 1`

    If leg is short, set SUM(EXP(L)) to 0, if leg is long, set SUM(EXP(S)) to 0

    where :math:`cPNL(L/S)_{t-1}` is your performance reports cumulative long or short PNL at date t-1
    where :math:`PNL(L/S)_{t}` is your performance reports long or short pnl at date t
    where :math:`GROSS_EXP_{t}` is portfolio gross exposure on date t
    where :math:`EXP(L/S)_{t}` is the long or short exposure on date t

    """
    start_date = DataContext.current.start_time
    end_date = DataContext.current.end_time

    start_date = (start_date - BDay(1)).date()
    end_date = end_date.date()

    performance_report = PerformanceReport.get(report_id)

    constituent_data = performance_report.get_portfolio_constituents(
        fields=['assetId', 'pnl', 'quantity', 'netExposure'], start_date=start_date, end_date=end_date).set_index(
        'date')

    if leg:
        if leg.lower() == "long":
            constituent_data = constituent_data[constituent_data['quantity'] > 0]
        if leg.lower() == "short":
            constituent_data = constituent_data[constituent_data['quantity'] < 0]

    # Split into long and short and aggregate across dates
    long_side = _return_metrics(constituent_data[constituent_data['quantity'] > 0],
                                list(constituent_data.index.unique()), "long")
    short_side = _return_metrics(constituent_data[constituent_data['quantity'] < 0],
                                 list(constituent_data.index.unique()), "short")

    short_exposure = sum(abs(short_side['exposure']))
    long_exposure = sum(long_side['exposure'])
    gross_exposure = short_exposure + long_exposure

    long_side['longRetWeighted'] = (long_side['longMetrics'] - 1) * (long_exposure / gross_exposure)
    short_side['shortRetWeighted'] = (short_side['shortMetrics'] - 1) * (short_exposure / gross_exposure)

    combined = long_side[['longRetWeighted']].join(short_side[['shortRetWeighted']], how='inner')
    combined['normalizedPerformance'] = combined['longRetWeighted'] + combined['shortRetWeighted'] + 1
    return pd.Series(combined['normalizedPerformance'], name="normalizedPerformance").dropna()