예제 #1
0
파일: model.py 프로젝트: lvyiwei1/StylePTB
    def __init__(self, input_scores):
        """Align a candidate with elements of the input, and define its score to be the summed score of aligned inputs.

        Args:
            input_scores (Tensor): of shape (batch_size, input_length)
        """
        input_scores_flat = tf.reshape(
            input_scores, shape=[-1])  # (batch_size * input_length,)
        self._input_length = input_scores.get_shape().as_list()[1]

        alignments_flat = FeedSequenceBatch(
        )  # (total_candidates, max_alignments)
        alignment_weights_flat = FeedSequenceBatch(
            dtype=tf.float32)  # (total_candidates, max_alignments)

        aligned_attention_weights = embed(
            alignments_flat,
            input_scores_flat)  # (total_candidates, max_alignments)
        scores_flat = weighted_sum(aligned_attention_weights,
                                   alignment_weights_flat.with_pad_value(
                                       0).values)  # (total_candidates,)

        unflatten = FeedSequenceBatch()  # (batch_size, num_candidates)
        scores = embed(unflatten, scores_flat).with_pad_value(
            0)  # (batch_size, num_candidates)

        self._alignments_flat = alignments_flat
        self._alignment_weights_flat = alignment_weights_flat
        self._unflatten = unflatten
        self._scores = scores
예제 #2
0
파일: model.py 프로젝트: dpfried/phrasenode
    def __init__(self, token_embeds, align='left', seq_length=None, name='SequenceEmbedder'):
        """Create a SequenceEmbeddings object.

        Args:
            token_embeds (Tensor): a Tensor of shape (token_vocab_size, token_dim)
            align (str): see FeedSequenceBatch
            seq_length (int): see FeedSequenceBatch
        """
        with tf.name_scope(name):
            sequence_batch = FeedSequenceBatch(align=align, seq_length=seq_length)  # (sequence_vocab_size, seq_length)
            embedded_sequence_batch = embed(sequence_batch, token_embeds)
            embeds = self.embed_sequences(embedded_sequence_batch)

        self._sequence_batch = sequence_batch
        self._embedded_sequence_batch = embedded_sequence_batch
        self._embeds = embeds
예제 #3
0
파일: model.py 프로젝트: dpfried/phrasenode
    def __init__(self, query, cand_embeds, project_query=False):
        """Create a CandidateScorer.

        Args:
            query (Tensor): of shape (batch_size, query_dim)
            cand_embeds (Tensor): of shape (cand_vocab_size, cand_dim)
            project_query (bool): whether to project the query tensor to match the dimension of the cand_embeds
        """
        with tf.name_scope("CandidateScorer"):
            cand_batch = FeedSequenceBatch()
            embedded_cand_batch = embed(cand_batch, cand_embeds)  # (batch_size, num_candidates, cand_dim)
            attention = Attention(embedded_cand_batch, query, project_query=project_query)

        self._attention = attention
        self._cand_batch = cand_batch
        self._scores = SequenceBatch(attention.logits, cand_batch.mask)
        self._probs = SequenceBatch(attention.probs, cand_batch.mask)