예제 #1
0
    def test_forwardFork(self):
        g = gt.Graph()
        g.add_vertex(3)
        g.add_edge(g.vertex(0), g.vertex(1))
        g.add_edge(g.vertex(0), g.vertex(2))
        n = Net(1, 2, g)

        # Init activation functions
        for v in n.g.vertices():
            n.activation[v] = Identity()

        # All weights and bias == 0
        assert_allclose(n.forward([1.0]), [0.0, 0.0])

        # Init weights
        for e in n.g.edges():
            n.weightProp[e] = 1.0
        assert_allclose(n.forward([0.0]), [0.0, 0.0])
        assert_allclose(n.forward([1.0]), [1.0, 1.0])
        assert_allclose(n.forward([12.0]), [12.0, 12.0])
        assert_allclose(n.forward([-12.0]), [-12.0, -12.0])

        # Init bias
        for v in n.g.vertices():
            n.biasProp[v] = 1.0
        assert_allclose(n.forward([0.0]), [1.0, 1.0])
        assert_allclose(n.forward([1.0]), [2.0, 2.0])
 def test_construc(self):
     g = gt.Graph()
     g.add_vertex(4)
     g.add_edge(g.vertex(0), g.vertex(1))
     g.add_edge(g.vertex(0), g.vertex(2))
     g.add_edge(g.vertex(1), g.vertex(3))
     g.add_edge(g.vertex(2), g.vertex(3))
     g.add_vertex(1)
     g.add_edge(g.vertex(4), g.vertex(0))
     n = Net(1, 1, g)
     for e in g.edges():
         n.weightProp[e] = 1
     for v in g.vertices():
         n.activation[v] = LogSigmoid(-1, 1)
     n.prepare()
     n.backward([1])
     n.forward([1])
     n.backward([2])