예제 #1
0
 def select_directory(self):
     """Open a directory selection dialog box"""
     value = self.item.from_string(to_text_string(self.edit.text()))
     parent = self.parent_layout.parent
     child_title = _get_child_title_func(parent)
     dname = getexistingdirectory(parent, child_title(self.item), value)
     if dname:
         self.edit.setText(dname)
예제 #2
0
def saveCalibrationPickle(stereo_var,calib_var):
    
    print '\n# SAVE CALIBRATION'
    # save data to file    
    app = guidata.qapplication()

    # get selected directory
    myDir = getexistingdirectory()
    with open(myDir+'\calibration.pickle', 'w') as f:
        pickle.dump([stereo_var,calib_var], f)
예제 #3
0
def loadCalibrationPickle():
    
    print '\n# LOAD CALIBRATION'
    # save data to file    
    app = guidata.qapplication()

    # get selected directory
    myDir = getexistingdirectory()
    with open(myDir+'\calibration.pickle') as f:
        stereo_var,calib_var = pickle.load(f)
    
    return stereo_var,calib_var
예제 #4
0
def getFiles():
    
    app = guidata.qapplication()
    
    # get selected directory
    myDir = getexistingdirectory()
    
    # change to selected directory
    os.chdir(myDir)
    files = glob.glob("*.tif")
    
    print "\n# DATA PATH"
    print myDir

    return files
예제 #5
0
def getFiles():
    
    app = guidata.qapplication()
    
    # get selected directory
    myDir = getexistingdirectory()
    
    # change to selected directory
    os.chdir(myDir)
    files_name = glob.glob("*.tif")
    
    # print calibration path
    print "\n# CALIBRATION PATH"
    print myDir

    return files_name
예제 #6
0
 def _open(self):
     saved_in, saved_out, saved_err = sys.stdin, sys.stdout, sys.stderr
     sys.stdout = None
     dirname = getexistingdirectory(self,
                                    _("Open"),
                                    "",
                                    options=QFileDialog.ShowDirsOnly)
     sys.stdin, sys.stdout, sys.stderr = saved_in, saved_out, saved_err
     if dirname:
         self.data = dwdata.DWObs()
         self.data.open_dir(dirname)
         cfeeds.set(self.data.list2choices(self.data.sections.keys()))
         csections.set(
             self.data.list2choices(self.data.sections.values()[0]))
         cpolars.set(self.data.list2choices(self.data.polars))
         self.setup_central_widget(MainWidget, self.toolbar)
         #try:
         #    self.data.dw_io.new_file(dirname, self.data.flist, 4, 8192)
         #except:
         #    print "file exists"
         self.mainwidget.open_setup(self.data)
         self.setWindowTitle(APP_NAME + " - " + dirname)
import os
import glob
from shutil import copyfile
from guidata.qt.compat import getexistingdirectory
import guidata

_app = guidata.qapplication()
image_path = getexistingdirectory(None, 'path to images')
#image_path = 'G:/Pictures/04092018-meg/E3-10fps/Separated_tif'
num_convert = 2000
fps = 10
FilesNames = glob.glob(image_path + "\*.png")
temp_name = FilesNames[0].split('t=')
name_root = temp_name[0] + 't='
temp_name = temp_name[1].split('.png')
#time_start = float(temp_name[0])
time_start = -3.0
if os.path.exists(image_path + "/temp"):
    print('temp folder already exists')
else:
    os.mkdir(image_path + '/temp')

i = 0
while i <= num_convert:
    time = time_start + i / fps
    try:
        src = name_root + str(round(time, 1)) + '.png'
        print(src)
        dst = image_path + '/temp/pic' + '%04d' % i + '.png'
        copyfile(src, dst)
    except FileNotFoundError:
@author: kiraz
"""

#importing libraries
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from functions import *
from guidata.qt.compat import getexistingdirectory
"""
Read data
"""
#Select data directory

directory = getexistingdirectory()

#directory = 'C:/Users/kiraz/Documents/McGill/Data/Espontanea-RD1/20191219/ND4LB/Data0125/Data0125.GUI'
#create a pandas data frame with the information coming from the cluster_group file
df = pd.read_csv(directory + "/cluster_group.tsv", sep="\t")
#Select unique values from data frame
labels = df.iloc[:, 0].unique()
# Create a column of Boolean values. All the "good" values will have the label True.
df['label'] = df['group'] == 'good'
#Take the cluster id corresponding to the templates marked as good
neurons = df[df['label']].cluster_id.values
#load spike data/todos los spike times combinados de todos las neuronas detectadas
neuralData = np.load(directory + "/spike_times.npy")
#load clusters/son los clusters id ordenados segun la ocurrencia de los spike times, se repiten por cada spike time
klusters = np.load(directory + "/spike_clusters.npy")
#stack arrays coming from the spikes and klusters/une clusters y spike times en un arreglo np