예제 #1
0
    def __init__(self, in_planes, planes, stride=1):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

        # Gate layers
        self.fc1 = nn.Conv2d(in_planes, 16, kernel_size=1)
        self.fc1bn = nn.BatchNorm2d(16)
        self.fc2 = nn.Conv2d(16, 2, kernel_size=1)
        # initialize the bias of the last fc for 
        # initial opening rate of the gate of about 85%
        self.fc2.bias.data[0] = 0.1
        self.fc2.bias.data[1] = 2

        self.gs = GumbleSoftmax()
        self.gs.cuda()
예제 #2
0
class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes,
                               planes,
                               kernel_size=3,
                               stride=stride,
                               padding=1,
                               bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes,
                               self.expansion * planes,
                               kernel_size=1,
                               bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion * planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes,
                          self.expansion * planes,
                          kernel_size=1,
                          stride=stride,
                          bias=False), nn.BatchNorm2d(self.expansion * planes))

        # Gate layers
        self.fc1 = nn.Conv2d(in_planes, 16, kernel_size=1)
        self.fc1bn = nn.BatchNorm1d(16)
        self.fc2 = nn.Conv2d(16, 2, kernel_size=1)
        # initialize the bias of the last fc for
        # initial opening rate of the gate of about 85%
        self.fc2.bias.data[0] = 0.1
        self.fc2.bias.data[1] = 2

        self.gs = GumbleSoftmax()
        self.gs.cuda()

    def forward(self, x, temperature=1):
        # Compute relevance score
        w = F.avg_pool2d(x, x.size(2))
        w = F.relu(self.fc1bn(self.fc1(w)))
        w = self.fc2(w)
        # Sample from Gumble Module
        w = self.gs(w, temp=temperature, force_hard=True)

        # TODO: For fast inference, check decision of gate and jump right
        #       to the next layer if needed.

        out = F.relu(self.bn1(self.conv1(x)), inplace=True)
        out = F.relu(self.bn2(self.conv2(out)), inplace=True)
        out = self.bn3(self.conv3(out))
        out = self.shortcut(x) + out * w[:, 1].unsqueeze(1)
        out = F.relu(out, inplace=True)
        # Return output of layer and the value of the gate
        # The value of the gate will be used in the target rate loss
        return out, w[:, 1]
예제 #3
0
class Bottleneck_without_gates(nn.Module):
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes,
                               planes,
                               kernel_size=3,
                               stride=stride,
                               padding=1,
                               bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes,
                               self.expansion * planes,
                               kernel_size=1,
                               bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion * planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes,
                          self.expansion * planes,
                          kernel_size=1,
                          stride=stride,
                          bias=False), nn.BatchNorm2d(self.expansion * planes))

        # Gate layers
        self.fc1 = nn.Conv2d(in_planes, 16, kernel_size=1)
        self.fc1bn = nn.BatchNorm2d(16)
        self.fc2 = nn.Conv2d(16, 2, kernel_size=1)
        # initialize the bias of the last fc for
        # initial opening rate of the gate of about 85%
        self.fc2.bias.data[0] = 0.1
        self.fc2.bias.data[1] = 2

        self.gs = GumbleSoftmax()
        self.gs.cuda()

    def forward(self, x, temperature=1):
        w = torch.ones([1], dtype=torch.float64, device=cuda0)

        # TODO: For fast inference, check decision of gate and jump right
        #       to the next layer if needed.

        out = F.relu(self.bn1(self.conv1(x)), inplace=True)
        out = F.relu(self.bn2(self.conv2(out)), inplace=True)
        out = self.bn3(self.conv3(out))
        out = self.shortcut(x) + out * w
        out = F.relu(out, inplace=True)
        # Return output of layer and the value of the gate
        # The value of the gate will be used in the target rate loss
        return out, w
예제 #4
0
파일: convnet_aig.py 프로젝트: yyaoyang/SI2
 def __init__(self,in_planes, planes, stride=1):
     super(BasicBlock, self).__init__()
     self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
     self.bn1 = nn.BatchNorm2d(planes)
     self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
     self.bn2 = nn.BatchNorm2d(planes)
     self.shortcut = nn.Sequential()
     if stride != 1 or in_planes != self.expansion*planes:
         self.shortcut = nn.Sequential(
             nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
             nn.BatchNorm2d(self.expansion*planes)
         )
     # Gate layers
     self.fc1 = nn.Conv2d(in_planes, 16, kernel_size=1)
     self.fc2 = nn.Conv2d(16, 2, kernel_size=1)
     self.fc2.bias.data[0] = 0.1
     self.fc2.bias.data[1] = 2
     self.gs = GumbleSoftmax()
     self.gs.cuda()
예제 #5
0
파일: convnet_aig.py 프로젝트: yyaoyang/SI2
class BasicBlock(nn.Module):
    expansion = 1
    def __init__(self,in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )
        # Gate layers
        self.fc1 = nn.Conv2d(in_planes, 16, kernel_size=1)
        self.fc2 = nn.Conv2d(16, 2, kernel_size=1)
        self.fc2.bias.data[0] = 0.1
        self.fc2.bias.data[1] = 2
        self.gs = GumbleSoftmax()
        self.gs.cuda()

    def forward(self, x, temperature=1):
        # Compute relevance score
        w = F.avg_pool2d(x, x.size(-1))
        w=self.fc1(w)

        # w=self.fc1bn(w)
        w = F.relu(w)
        w = self.fc2(w)
        # Sample from Gumble Module
        w = self.gs(w, temp=temperature, force_hard=True)

        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out = self.shortcut(x) + out * w[:,1].unsqueeze(1)
        out = F.relu(out)
        # Return output of layer and the value of the gate
        # The value of the gate will be used in the target rate loss
        return out, w[:, 1]