def test_realistic_valid_examples(example, use_gurobi): penalty_attr = "penalty" location_attr = "location" example_dir = Path(__file__).parent / "mouselight_examples" / "valid" / example consensus = PointsKey("CONSENSUS") skeletonization = PointsKey("SKELETONIZATION") matched = PointsKey("MATCHED") matched_with_fallback = PointsKey("MATCHED_WITH_FALLBACK") inf_roi = Roi(Coordinate((None,) * 3), Coordinate((None,) * 3)) request = BatchRequest() request[matched] = PointsSpec(roi=inf_roi) request[matched_with_fallback] = PointsSpec(roi=inf_roi) request[consensus] = PointsSpec(roi=inf_roi) pipeline = ( ( GraphSource(example_dir / "graph.obj", [skeletonization]), GraphSource(example_dir / "tree.obj", [consensus]), ) + MergeProvider() + TopologicalMatcher( skeletonization, consensus, matched, expected_edge_len=10, match_distance_threshold=76, max_gap_crossing=48, use_gurobi=use_gurobi, location_attr=location_attr, penalty_attr=penalty_attr, ) + TopologicalMatcher( skeletonization, consensus, matched_with_fallback, expected_edge_len=10, match_distance_threshold=76, max_gap_crossing=48, use_gurobi=use_gurobi, location_attr=location_attr, penalty_attr=penalty_attr, with_fallback=True, ) ) with build(pipeline): batch = pipeline.request_batch(request) consensus_ccs = list(batch[consensus].connected_components) matched_with_fallback_ccs = list(batch[matched_with_fallback].connected_components) matched_ccs = list(batch[matched].connected_components) assert len(matched_ccs) == len(consensus_ccs)
def provide(self, request): batch = Batch() if PointsKeys.TEST_POINTS in request: roi_points = request[PointsKeys.TEST_POINTS].roi points = {} for i, point in self.points.items(): if roi_points.contains(point.location): points[i] = copy.deepcopy(point) batch.points[PointsKeys.TEST_POINTS] = Points( points, PointsSpec(roi=roi_points) ) if ArrayKeys.TEST_LABELS in request: roi_array = request[ArrayKeys.TEST_LABELS].roi roi_voxel = roi_array // self.spec[ArrayKeys.TEST_LABELS].voxel_size data = np.zeros(roi_voxel.get_shape(), dtype=np.uint32) data[:, ::2] = 100 for i, point in self.points.items(): loc = self.point_to_voxel(roi_array, point.location) data[loc] = i spec = self.spec[ArrayKeys.TEST_LABELS].copy() spec.roi = roi_array batch.arrays[ArrayKeys.TEST_LABELS] = Array(data, spec=spec) return batch
def prepare(self, request): # add "base" and "add" volume to request deps = BatchRequest() deps[self.raw_base] = request[self.raw_fused] deps[self.raw_add] = request[self.raw_fused] # enlarge roi for labels to be the same size as the raw data for mask generation deps[self.labels_base] = request[self.raw_fused] deps[self.labels_add] = request[self.raw_fused] # make points optional if self.points_fused in request: deps[self.points_base] = PointsSpec(roi=request[self.raw_fused].roi) deps[self.points_add] = PointsSpec(roi=request[self.raw_fused].roi) return deps
def test_relabel_components(self): path = Path(self.path_to("test_swc_source.swc")) # write test swc self._write_swc(path, self._toy_swc_points()) # read arrays swc = PointsKey("SWC") source = SwcFileSource(path, swc) with build(source): batch = source.request_batch( BatchRequest( {swc: PointsSpec(roi=Roi((0, 1, 0), (11, 10, 1)))})) temp_g = nx.DiGraph() for point_id, point in batch.points[swc].data.items(): temp_g.add_node(point.point_id, label_id=point.label_id) if (point.parent_id != -1 and point.parent_id != point.point_id and point.parent_id in batch.points[swc].data): temp_g.add_edge(point.point_id, point.parent_id) previous_label = None ccs = list(nx.weakly_connected_components(temp_g)) self.assertEqual(len(ccs), 3) for cc in ccs: self.assertEqual(len(cc), 10) label = None for point_id in cc: if label is None: label = temp_g.nodes[point_id]["label_id"] self.assertNotEqual(label, previous_label) self.assertEqual(temp_g.nodes[point_id]["label_id"], label) previous_label = label
def provide(self, request): timing = Timing(self) timing.start() min_bb = request[self.points].roi.get_begin() max_bb = request[self.points].roi.get_end() logger.debug( "CSV points source got request for %s", request[self.points].roi) point_filter = np.ones((self.locations.shape[0],), dtype=np.bool) for d in range(self.locations.shape[1]): point_filter = np.logical_and(point_filter, self.locations[:, d] >= min_bb[d]) point_filter = np.logical_and(point_filter, self.locations[:, d] < max_bb[d]) points_data = self._get_points(point_filter) logger.debug("Points data: %s", points_data) logger.debug("Type of point: %s", type(list(points_data.values())[0])) points_spec = PointsSpec(roi=request[self.points].roi.copy()) batch = Batch() batch.points[self.points] = Points(points_data, points_spec) timing.stop() batch.profiling_stats.add(timing) return batch
def test_ensure_center_non_zero(self): path = Path(self.path_to("test_swc_source.swc")) # write test swc self._write_swc(path, self._toy_swc_points().to_nx_graph()) # read arrays swc = PointsKey("SWC") img = ArrayKey("IMG") pipeline = (SwcFileSource( path, [swc], [PointsSpec(roi=Roi((0, 0, 0), (11, 11, 11)))]) + RandomLocation(ensure_nonempty=swc, ensure_centered=True) + RasterizeSkeleton( points=swc, array=img, array_spec=ArraySpec( interpolatable=False, dtype=np.uint32, voxel_size=Coordinate((1, 1, 1)), ), )) request = BatchRequest() request.add(img, Coordinate((5, 5, 5))) request.add(swc, Coordinate((5, 5, 5))) with build(pipeline): batch = pipeline.request_batch(request) data = batch[img].data g = batch[swc] assert g.num_vertices() > 0 self.assertNotEqual(data[tuple(np.array(data.shape) // 2)], 0)
def provide(self, request): batch = Batch() # have the pixels encode their position if ArrayKeys.RAW in request: # the z,y,x coordinates of the ROI roi = request[ArrayKeys.RAW].roi roi_voxel = roi // self.spec[ArrayKeys.RAW].voxel_size meshgrids = np.meshgrid(range(roi_voxel.get_begin()[0], roi_voxel.get_end()[0]), range(roi_voxel.get_begin()[1], roi_voxel.get_end()[1]), range(roi_voxel.get_begin()[2], roi_voxel.get_end()[2]), indexing='ij') data = meshgrids[0] + meshgrids[1] + meshgrids[2] spec = self.spec[ArrayKeys.RAW].copy() spec.roi = roi batch.arrays[ArrayKeys.RAW] = Array(data, spec) if ArrayKeys.GT_LABELS in request: roi = request[ArrayKeys.GT_LABELS].roi roi_voxel_shape = ( roi // self.spec[ArrayKeys.GT_LABELS].voxel_size).get_shape() data = np.ones(roi_voxel_shape) data[roi_voxel_shape[0] // 2:, roi_voxel_shape[1] // 2:, :] = 2 data[roi_voxel_shape[0] // 2:, -(roi_voxel_shape[1] // 2):, :] = 3 spec = self.spec[ArrayKeys.GT_LABELS].copy() spec.roi = roi batch.arrays[ArrayKeys.GT_LABELS] = Array(data, spec) if PointsKeys.PRESYN in request: data_presyn, data_postsyn = self.__get_pre_and_postsyn_locations( roi=request[PointsKeys.PRESYN].roi) elif PointsKeys.POSTSYN in request: data_presyn, data_postsyn = self.__get_pre_and_postsyn_locations( roi=request[PointsKeys.POSTSYN].roi) voxel_size_points = self.spec[ArrayKeys.RAW].voxel_size for (points_key, spec) in request.points_specs.items(): if points_key == PointsKeys.PRESYN: data = data_presyn if points_key == PointsKeys.POSTSYN: data = data_postsyn batch.points[points_key] = Points(data, PointsSpec(spec.roi)) return batch
def setup(self): for identifier in [ArrayKeys.RAW, ArrayKeys.GT_LABELS]: self.provides( identifier, ArraySpec(roi=Roi((1000, 1000, 1000), (400, 400, 400)), voxel_size=(20, 2, 2))) for identifier in [PointsKeys.PRESYN, PointsKeys.POSTSYN]: self.provides( identifier, PointsSpec(roi=Roi((1000, 1000, 1000), (400, 400, 400))))
def setup(self): self._read_points() logger.debug("Locations: %s", self.locations) if self.points_spec is not None: self.provides(self.points, self.points_spec) return min_bb = Coordinate(np.floor(np.amin(self.locations, 0))) max_bb = Coordinate(np.ceil(np.amax(self.locations, 0)) + 1) roi = Roi(min_bb, max_bb - min_bb) self.provides(self.points, PointsSpec(roi=roi))
def setup(self): roi = Roi(Coordinate([0] * len(self.size)), self.size) for points_key in self.points: self.provides(points_key, PointsSpec(roi=roi)) k = min(self.size) point_list = [(i, { "location": np.array([i * k / self.num_points] * 3) }) for i in range(self.num_points)] edge_list = [(i, i + 1, {}) for i in range(self.num_points - 1)] if not self.directed: edge_list += [(i + 1, i, {}) for i in range(self.num_points - 1)] self.graph = SpatialGraph() self.graph.add_nodes_from(point_list) self.graph.add_edges_from(edge_list)
def test_read_single_swc(self): path = Path(self.path_to("test_swc_source.swc")) # write test swc self._write_swc(path, self._toy_swc_points()) # read arrays swc = PointsKey("SWC") source = SwcFileSource(path, swc) with build(source): batch = source.request_batch( BatchRequest( {swc: PointsSpec(roi=Roi((0, 0, 0), (11, 11, 1)))})) for point in self._toy_swc_points(): self.assertCountEqual( point.location, batch.points[swc].data[point.point_id].location)
def test_create_boundary_nodes(self): path = Path(self.path_to("test_swc_source.swc")) # write test swc self._write_swc(path, self._toy_swc_points(), {"resolution": np.array([2, 2, 2])}) # read arrays swc = PointsKey("SWC") source = SwcFileSource(path, swc) with build(source): batch = source.request_batch( BatchRequest({swc: PointsSpec(roi=Roi((0, 5, 0), (1, 3, 1)))})) temp_g = nx.DiGraph() for point_id, point in batch.points[swc].data.items(): temp_g.add_node(point.point_id, label_id=point.label_id, location=point.location) if (point.parent_id != -1 and point.parent_id != point.point_id and point.parent_id in batch.points[swc].data): temp_g.add_edge(point.point_id, point.parent_id) else: root = point.point_id current = root expected_path = [ tuple(np.array([0.0, 5.0, 0.0])), tuple(np.array([0.0, 6.0, 0.0])), tuple(np.array([0.0, 7.0, 0.0])), ] expected_node_ids = [0, 1, 2] path = [] node_ids = [] while current is not None: node_ids.append(current) path.append(tuple(temp_g.nodes[current]["location"])) predecessors = list(temp_g._pred[current].keys()) current = predecessors[0] if len(predecessors) == 1 else None self.assertCountEqual(path, expected_path) self.assertCountEqual(node_ids, expected_node_ids)
def test_grow_labels_speed(self): bb = Roi(Coordinate([0, 0, 0]), ([256, 256, 256])) voxel_size = Coordinate([1, 1, 1]) swc_file = "test_swc.swc" swc_path = Path(self.path_to(swc_file)) swc_points = self._get_points(np.array([1, 1, 1]), np.array([1, 1, 1]), bb) self._write_swc(swc_path, swc_points.graph) # create swc sources swc_key = PointsKey("SWC") labels_key = ArrayKey("LABELS") # add request request = BatchRequest() request.add(labels_key, bb.get_shape()) request.add(swc_key, bb.get_shape()) # data source for swc a data_source = tuple() data_source = (data_source + SwcFileSource( swc_path, [swc_key], [PointsSpec(roi=bb)]) + RasterizeSkeleton( points=swc_key, array=labels_key, array_spec=ArraySpec(interpolatable=False, dtype=np.uint32, voxel_size=voxel_size), ) + GrowLabels(array=labels_key, radius=3)) pipeline = data_source num_repeats = 10 t1 = time.time() with build(pipeline): for i in range(num_repeats): pipeline.request_batch(request) t2 = time.time() self.assertLess((t2 - t1) / num_repeats, 0.1)
def test_overlap(self): path = Path(self.path_to("test_swc_sources")) path.mkdir(parents=True, exist_ok=True) # write test swc for i in range(3): self._write_swc( path / "{}.swc".format(i), self._toy_swc_points(), {"offset": np.array([0, 0, 0])}, ) # read arrays swc = PointsKey("SWC") source = SwcFileSource(path, swc) with build(source): batch = source.request_batch( BatchRequest( {swc: PointsSpec(roi=Roi((0, 0, 0), (11, 11, 1)))})) temp_g = nx.DiGraph() for point_id, point in batch.points[swc].data.items(): temp_g.add_node(point.point_id, label_id=point.label_id) if (point.parent_id != -1 and point.parent_id != point.point_id and point.parent_id in batch.points[swc].data): temp_g.add_edge(point.point_id, point.parent_id) previous_label = None ccs = list(nx.weakly_connected_components(temp_g)) self.assertEqual(len(ccs), 3) for cc in ccs: self.assertEqual(len(cc), 41) label = None for point_id in cc: if label is None: label = temp_g.nodes[point_id]["label_id"] self.assertNotEqual(label, previous_label) self.assertEqual(temp_g.nodes[point_id]["label_id"], label) previous_label = label
def setup(self): self.points = { 0: Point([0, 10, 0]), 1: Point([0, 30, 0]), 2: Point([0, 50, 0]), 3: Point([0, 70, 0]), 4: Point([0, 90, 0]), } self.provides( PointsKeys.TEST_POINTS, PointsSpec(roi=Roi((-100, -100, -100), (300, 300, 300))), ) self.provides( ArrayKeys.TEST_LABELS, ArraySpec( roi=Roi((-100, -100, -100), (300, 300, 300)), voxel_size=Coordinate((4, 1, 1)), interpolatable=False, ), )
def test_two_disjoint_lines_intensity(self): LABEL_RADIUS = 3 RAW_RADIUS = 3 BLEND_SMOOTHNESS = 3 bb = Roi(Coordinate([0, 0, 0]), ([256, 256, 256])) voxel_size = Coordinate([1, 1, 1]) swc_files = ("test_line_a.swc", "test_line_b.swc") swc_paths = tuple(Path(self.path_to(file_name)) for file_name in swc_files) # create two lines seperated by a given distance and write them to swc files intercepts, slopes = self._get_line_pair(roi=bb, dist=3 * LABEL_RADIUS) for intercept, slope, swc_path in zip(intercepts, slopes, swc_paths): swc_points = self._get_points(intercept, slope, bb) self._write_swc(swc_path, swc_points.to_nx_graph()) # create swc sources fused = ArrayKey("FUSED") fused_labels = ArrayKey("FUSED_LABELS") fused_swc = PointsKey("FUSED_SWC") swc_key_names = ("SWC_A", "SWC_B") labels_key_names = ("LABELS_A", "LABELS_B") raw_key_names = ("RAW_A", "RAW_B") swc_keys = tuple(PointsKey(name) for name in swc_key_names) labels_keys = tuple(ArrayKey(name) for name in labels_key_names) raw_keys = tuple(ArrayKey(name) for name in raw_key_names) # add request request = BatchRequest() request.add(fused, bb.get_shape()) request.add(fused_labels, bb.get_shape()) request.add(fused_swc, bb.get_shape()) request.add(labels_keys[0], bb.get_shape()) request.add(labels_keys[1], bb.get_shape()) request.add(raw_keys[0], bb.get_shape()) request.add(raw_keys[1], bb.get_shape()) request.add(swc_keys[0], bb.get_shape()) request.add(swc_keys[1], bb.get_shape()) # data source for swc a data_sources_a = tuple() data_sources_a = ( data_sources_a + SwcFileSource(swc_paths[0], [swc_keys[0]], [PointsSpec(roi=bb)]) + RasterizeSkeleton( points=swc_keys[0], array=labels_keys[0], array_spec=ArraySpec( interpolatable=False, dtype=np.uint16, voxel_size=voxel_size ), ) + GrowLabels(array=labels_keys[0], radii=[LABEL_RADIUS]) + RasterizeSkeleton( points=swc_keys[0], array=raw_keys[0], array_spec=ArraySpec( interpolatable=False, dtype=np.uint16, voxel_size=voxel_size ), ) + GrowLabels(array=raw_keys[0], radii=[RAW_RADIUS]) + Normalize(raw_keys[0]) ) # data source for swc b data_sources_b = tuple() data_sources_b = ( data_sources_b + SwcFileSource(swc_paths[1], [swc_keys[1]], [PointsSpec(roi=bb)]) + RasterizeSkeleton( points=swc_keys[1], array=labels_keys[1], array_spec=ArraySpec( interpolatable=False, dtype=np.uint16, voxel_size=voxel_size ), ) + GrowLabels(array=labels_keys[1], radii=[LABEL_RADIUS]) + RasterizeSkeleton( points=swc_keys[1], array=raw_keys[1], array_spec=ArraySpec( interpolatable=False, dtype=np.uint16, voxel_size=voxel_size ), ) + GrowLabels(array=raw_keys[1], radii=[RAW_RADIUS]) + Normalize(raw_keys[1]) ) data_sources = tuple([data_sources_a, data_sources_b]) + MergeProvider() pipeline = data_sources + FusionAugment( raw_keys[0], raw_keys[1], labels_keys[0], labels_keys[1], swc_keys[0], swc_keys[1], fused, fused_labels, fused_swc, blend_mode="intensity", blend_smoothness=BLEND_SMOOTHNESS, num_blended_objects=0, ) with build(pipeline): batch = pipeline.request_batch(request) fused_data = batch[fused].data fused_data = np.pad(fused_data, (1,), "constant", constant_values=(0,)) a_data = batch[raw_keys[0]].data a_data = np.pad(a_data, (1,), "constant", constant_values=(0,)) b_data = batch[raw_keys[1]].data b_data = np.pad(b_data, (1,), "constant", constant_values=(0,)) diff = np.linalg.norm(fused_data - a_data - b_data) self.assertAlmostEqual(diff, 0)
def test_recenter(): path = Path(self.path_to("test_swc_source.swc")) # write test swc self._write_swc(path, self._toy_swc_points()) # read arrays swc_source = PointsKey("SWC_SOURCE") labels_source = ArrayKey("LABELS_SOURCE") img_source = ArrayKey("IMG_SOURCE") img_swc = PointsKey("IMG_SWC") label_swc = PointsKey("LABEL_SWC") imgs = ArrayKey("IMGS") labels = ArrayKey("LABELS") points_a = PointsKey("SKELETON_A") points_b = PointsKey("SKELETON_B") img_a = ArrayKey("VOLUME_A") img_b = ArrayKey("VOLUME_B") labels_a = ArrayKey("LABELS_A") labels_b = ArrayKey("LABELS_B") # Get points from test swc swc_file_source = SwcFileSource( path, [swc_source], [PointsSpec(roi=Roi((-10, -10, -10), (31, 31, 31)))] ) # Create an artificial image source by rasterizing the points image_source = ( SwcFileSource( path, [img_swc], [PointsSpec(roi=Roi((-10, -10, -10), (31, 31, 31)))] ) + RasterizeSkeleton( points=img_swc, array=img_source, array_spec=ArraySpec( interpolatable=True, dtype=np.uint32, voxel_size=Coordinate((1, 1, 1)) ), ) + BinarizeLabels(labels=img_source, labels_binary=imgs) + GrowLabels(array=imgs, radius=0) ) # Create an artificial label source by rasterizing the points label_source = ( SwcFileSource( path, [label_swc], [PointsSpec(roi=Roi((-10, -10, -10), (31, 31, 31)))] ) + RasterizeSkeleton( points=label_swc, array=labels_source, array_spec=ArraySpec( interpolatable=True, dtype=np.uint32, voxel_size=Coordinate((1, 1, 1)) ), ) + BinarizeLabels(labels=labels_source, labels_binary=labels) + GrowLabels(array=labels, radius=1) ) skeleton = tuple() skeleton += ( (swc_file_source, image_source, label_source) + MergeProvider() + RandomLocation(ensure_nonempty=swc_source, ensure_centered=True) ) pipeline = ( skeleton + GetNeuronPair( point_source=swc_source, array_source=imgs, label_source=labels, points=(points_a, points_b), arrays=(img_a, img_b), labels=(labels_a, labels_b), seperate_by=4, shift_attempts=100, ) + Recenter(points_a, img_a, max_offset=4) + Recenter(points_b, img_b, max_offset=4) ) request = BatchRequest() data_shape = 9 request.add(points_a, Coordinate((data_shape, data_shape, data_shape))) request.add(points_b, Coordinate((data_shape, data_shape, data_shape))) request.add(img_a, Coordinate((data_shape, data_shape, data_shape))) request.add(img_b, Coordinate((data_shape, data_shape, data_shape))) request.add(labels_a, Coordinate((data_shape, data_shape, data_shape))) request.add(labels_b, Coordinate((data_shape, data_shape, data_shape))) with build(pipeline): batch = pipeline.request_batch(request) data_a = batch[img_a].data assert data_a[tuple(np.array(data_a.shape) // 2)] == 1 data_a = np.pad(data_a, (1,), "constant", constant_values=(0,)) data_b = batch[img_b].data assert data_b[tuple(np.array(data_b.shape) // 2)] == 1 data_b = np.pad(data_b, (1,), "constant", constant_values=(0,)) data_c = data_a + data_b data = np.array((data_a, data_b, data_c)) for _, point in batch[points_a].data.items(): assert ( data[(0,) + tuple(int(x) + 1 for x in point.location)] == 1 ), "data at {} is not 1, its {}".format( point.location, data[(0,) + tuple(int(x) for x in point.location)] ) for _, point in batch[points_b].data.items(): assert ( data[(1,) + tuple(int(x) + 1 for x in point.location)] == 1 ), "data at {} is not 1".format(point.location)
def test_get_neuron_pair(self): path = Path(self.path_to("test_swc_source.swc")) # write test swc self._write_swc(path, self._toy_swc_points().to_nx_graph()) # read arrays swc_source = PointsKey("SWC_SOURCE") ensure_nonempty = PointsKey("ENSURE_NONEMPTY") labels_source = ArrayKey("LABELS_SOURCE") img_source = ArrayKey("IMG_SOURCE") img_swc = PointsKey("IMG_SWC") label_swc = PointsKey("LABEL_SWC") imgs = ArrayKey("IMGS") labels = ArrayKey("LABELS") points_a = PointsKey("SKELETON_A") points_b = PointsKey("SKELETON_B") img_a = ArrayKey("VOLUME_A") img_b = ArrayKey("VOLUME_B") labels_a = ArrayKey("LABELS_A") labels_b = ArrayKey("LABELS_B") data_shape = 5 output_shape = Coordinate((data_shape, data_shape, data_shape)) # Get points from test swc swc_file_source = SwcFileSource( path, [swc_source, ensure_nonempty], [ PointsSpec(roi=Roi((-10, -10, -10), (31, 31, 31))), PointsSpec(roi=Roi((-10, -10, -10), (31, 31, 31))), ], ) # Create an artificial image source by rasterizing the points image_source = (SwcFileSource( path, [img_swc], [PointsSpec(roi=Roi((-10, -10, -10), (31, 31, 31)))]) + RasterizeSkeleton( points=img_swc, array=img_source, array_spec=ArraySpec( interpolatable=True, dtype=np.uint32, voxel_size=Coordinate((1, 1, 1)), ), ) + BinarizeLabels(labels=img_source, labels_binary=imgs) + GrowLabels(array=imgs, radius=0)) # Create an artificial label source by rasterizing the points label_source = (SwcFileSource(path, [label_swc], [ PointsSpec(roi=Roi((-10, -10, -10), (31, 31, 31))) ]) + RasterizeSkeleton( points=label_swc, array=labels_source, array_spec=ArraySpec( interpolatable=True, dtype=np.uint32, voxel_size=Coordinate((1, 1, 1)), ), ) + BinarizeLabels(labels=labels_source, labels_binary=labels) + GrowLabels(array=labels, radius=1)) skeleton = tuple() skeleton += ((swc_file_source, image_source, label_source) + MergeProvider() + RandomLocation(ensure_nonempty=ensure_nonempty, ensure_centered=True)) pipeline = skeleton + GetNeuronPair( point_source=swc_source, nonempty_placeholder=ensure_nonempty, array_source=imgs, label_source=labels, points=(points_a, points_b), arrays=(img_a, img_b), labels=(labels_a, labels_b), seperate_by=(1, 3), shift_attempts=100, request_attempts=10, output_shape=output_shape, ) request = BatchRequest() request.add(points_a, output_shape) request.add(points_b, output_shape) request.add(img_a, output_shape) request.add(img_b, output_shape) request.add(labels_a, output_shape) request.add(labels_b, output_shape) with build(pipeline): for i in range(10): batch = pipeline.request_batch(request) assert all([ x in batch for x in [points_a, points_b, img_a, img_b, labels_a, labels_b] ]) min_dist = 5 for a, b in itertools.product( batch[points_a].nodes, batch[points_b].nodes, ): min_dist = min( min_dist, np.linalg.norm(a.location - b.location), ) self.assertLessEqual(min_dist, 3) self.assertGreaterEqual(min_dist, 1)
def test_two_disjoint_lines_softmask(self): LABEL_RADIUS = 3 RAW_RADIUS = 3 # exagerated to show problem BLEND_SMOOTHNESS = 10 bb = Roi(Coordinate([0, 0, 0]), ([256, 256, 256])) voxel_size = Coordinate([1, 1, 1]) swc_files = ("test_line_a.swc", "test_line_b.swc") swc_paths = tuple( Path(self.path_to(file_name)) for file_name in swc_files) # create two lines seperated by a given distance and write them to swc files intercepts, slopes = self._get_line_pair(roi=bb, dist=3 * LABEL_RADIUS) for intercept, slope, swc_path in zip(intercepts, slopes, swc_paths): swc_points = self._get_points(intercept, slope, bb) self._write_swc(swc_path, swc_points) # create swc sources fused = ArrayKey("FUSED") fused_labels = ArrayKey("FUSED_LABELS") swc_key_names = ("SWC_A", "SWC_B") labels_key_names = ("LABELS_A", "LABELS_B") raw_key_names = ("RAW_A", "RAW_B") swc_keys = tuple(PointsKey(name) for name in swc_key_names) labels_keys = tuple(ArrayKey(name) for name in labels_key_names) raw_keys = tuple(ArrayKey(name) for name in raw_key_names) # add request request = BatchRequest() request.add(fused, bb.get_shape()) request.add(fused_labels, bb.get_shape()) request.add(labels_keys[0], bb.get_shape()) request.add(labels_keys[1], bb.get_shape()) request.add(raw_keys[0], bb.get_shape()) request.add(raw_keys[1], bb.get_shape()) request.add(swc_keys[0], bb.get_shape()) request.add(swc_keys[1], bb.get_shape()) # data source for swc a data_sources_a = tuple() data_sources_a = (data_sources_a + SwcFileSource( swc_paths[0], swc_keys[0], PointsSpec(roi=bb)) + RasterizeSkeleton( points=swc_keys[0], array=labels_keys[0], array_spec=ArraySpec(interpolatable=False, dtype=np.uint32, voxel_size=voxel_size), radius=LABEL_RADIUS, ) + RasterizeSkeleton( points=swc_keys[0], array=raw_keys[0], array_spec=ArraySpec(interpolatable=False, dtype=np.uint32, voxel_size=voxel_size), radius=RAW_RADIUS, )) # data source for swc b data_sources_b = tuple() data_sources_b = (data_sources_b + SwcFileSource( swc_paths[1], swc_keys[1], PointsSpec(roi=bb)) + RasterizeSkeleton( points=swc_keys[1], array=labels_keys[1], array_spec=ArraySpec(interpolatable=False, dtype=np.uint32, voxel_size=voxel_size), radius=LABEL_RADIUS, ) + RasterizeSkeleton( points=swc_keys[1], array=raw_keys[1], array_spec=ArraySpec(interpolatable=False, dtype=np.uint32, voxel_size=voxel_size), radius=RAW_RADIUS, )) data_sources = tuple([data_sources_a, data_sources_b ]) + MergeProvider() pipeline = data_sources + FusionAugment( raw_keys[0], raw_keys[1], labels_keys[0], labels_keys[1], fused, fused_labels, blend_mode="labels_mask", blend_smoothness=BLEND_SMOOTHNESS, num_blended_objects=0, ) with build(pipeline): batch = pipeline.request_batch(request) fused_data = batch[fused].data fused_data = np.pad(fused_data, (1, ), "constant", constant_values=(0, )) a_data = batch[raw_keys[0]].data a_data = np.pad(a_data, (1, ), "constant", constant_values=(0, )) b_data = batch[raw_keys[1]].data b_data = np.pad(b_data, (1, ), "constant", constant_values=(0, )) all_data = np.zeros((5, ) + fused_data.shape) all_data[0, :, :, :] = fused_data all_data[1, :, :, :] = a_data + b_data all_data[2, :, :, :] = fused_data - a_data - b_data all_data[3, :, :, :] = a_data all_data[4, :, :, :] = b_data # Uncomment to visualize problem if imported_volshow: volshow(all_data) # input("Press enter when you are done viewing the data: ") diff = np.linalg.norm(fused_data - a_data - b_data) self.assertAlmostEqual(diff, 0)
def test_rasterize_speed(self): # This is worryingly slow for such a small volume (256**3) and only 2 # straight lines for skeletons. LABEL_RADIUS = 3 bb = Roi(Coordinate([0, 0, 0]), ([256, 256, 256])) voxel_size = Coordinate([1, 1, 1]) swc_files = ("test_line_a.swc", "test_line_b.swc") swc_paths = tuple(Path(self.path_to(file_name)) for file_name in swc_files) # create two lines seperated by a given distance and write them to swc files intercepts, slopes = self._get_line_pair(roi=bb, dist=3 * LABEL_RADIUS) for intercept, slope, swc_path in zip(intercepts, slopes, swc_paths): swc_points = self._get_points(intercept, slope, bb) self._write_swc(swc_path, swc_points) # create swc sources swc_key_names = ("SWC_A", "SWC_B") labels_key_names = ("LABELS_A", "LABELS_B") swc_keys = tuple(PointsKey(name) for name in swc_key_names) labels_keys = tuple(ArrayKey(name) for name in labels_key_names) # add request request = BatchRequest() request.add(labels_keys[0], bb.get_shape()) request.add(labels_keys[1], bb.get_shape()) request.add(swc_keys[0], bb.get_shape()) request.add(swc_keys[1], bb.get_shape()) # data source for swc a data_sources_a = tuple() data_sources_a = ( data_sources_a + SwcFileSource(swc_paths[0], swc_keys[0], PointsSpec(roi=bb)) + RasterizeSkeleton( points=swc_keys[0], array=labels_keys[0], array_spec=ArraySpec( interpolatable=False, dtype=np.uint32, voxel_size=voxel_size ), radius=LABEL_RADIUS, ) ) # data source for swc b data_sources_b = tuple() data_sources_b = ( data_sources_b + SwcFileSource(swc_paths[1], swc_keys[1], PointsSpec(roi=bb)) + RasterizeSkeleton( points=swc_keys[1], array=labels_keys[1], array_spec=ArraySpec( interpolatable=False, dtype=np.uint32, voxel_size=voxel_size ), radius=LABEL_RADIUS, ) ) data_sources = tuple([data_sources_a, data_sources_b]) + MergeProvider() pipeline = data_sources t1 = time.time() with build(pipeline): batch = pipeline.request_batch(request) a_data = batch[labels_keys[0]].data a_data = np.pad(a_data, (1,), "constant", constant_values=(0,)) b_data = batch[labels_keys[1]].data b_data = np.pad(b_data, (1,), "constant", constant_values=(0,)) t2 = time.time() self.assertLess(t2 - t1, 0.1)