예제 #1
0
    def apply_dynamic(input, gurobi_model: grb.Model, action, env_input_size):
        '''

        :param input:
        :param gurobi_model:
        :param action_ego:
        :param t:
        :return:

        lead 100km/h 28m/s
        ego 130km/h  36.1 m/s


        '''
        v_lead = 28
        max_speed = 36.0
        delta_x = input[0]
        v_ego = input[1]
        z = gurobi_model.addMVar(shape=(env_input_size, ),
                                 lb=float("-inf"),
                                 name=f"x_prime")
        const_acc = 3
        dt = .1  # seconds
        if action == 0:
            acceleration = -const_acc
        elif action == 1:
            acceleration = const_acc
        else:
            acceleration = 0
        v_ego_prime_temp1 = gurobi_model.addVar()
        v_ego_prime_temp2 = gurobi_model.addVar()
        v_next = v_ego._vararr[0] + acceleration * dt

        gurobi_model.addConstr(v_ego_prime_temp1 == v_next, name=f"v_constr")
        gurobi_model.addConstr(v_ego_prime_temp2 == grb.min_(
            max_speed, v_ego_prime_temp1),
                               name=f"v_constr")
        v_ego_prime = grb.MVar(v_ego_prime_temp2)  # convert from Var to MVar
        v_lead_prime = v_lead
        delta_prime_v = v_lead_prime - v_ego_prime
        delta_prime_v_temp = gurobi_model.addMVar(shape=(1, ),
                                                  lb=float("-inf"),
                                                  name=f"delta_prime_v_temp")
        gurobi_model.addConstr(delta_prime_v_temp == delta_prime_v,
                               name=f"delta_prime_v_constr")
        delta_x_prime = delta_x + delta_prime_v_temp * dt
        # x_lead_prime = x_lead + v_lead_prime * dt
        # x_ego_prime = x_ego + v_ego_prime * dt
        gurobi_model.addConstr(z[0] == delta_x_prime, name=f"dyna_constr_1")
        gurobi_model.addConstr(z[1] == v_ego_prime, name=f"dyna_constr_3")
        return z
예제 #2
0
def build_facility_columns(data: InputData,
                           model: grb.Model) -> Dict[str, grb.Var]:
    facility_name_to_column: Dict[str, grb.Var] = dict()

    for facility in data.facilities:

        name = f'facility_{facility.name}'
        lb, obj = (0.0, facility.build_cost) if not facility.exists else (1.0,
                                                                          0)
        var = model.addVar(lb=lb,
                           ub=1.0,
                           obj=obj,
                           vtype=grb.GRB.BINARY,
                           name=name,
                           column=None)

        facility_name_to_column[facility.name] = var

    return facility_name_to_column
예제 #3
0
def build_transport_columns(
        data: InputData, model: grb.Model) -> Dict[Tuple[str, str], grb.Var]:
    facility_customer_to_column: Dict[Tuple[str, str], grb.Var] = dict()

    lb = 0.0
    ub = grb.GRB.INFINITY

    for facility in data.facilities:
        for customer_name, unit_transport_cost in facility.transport_cost.items(
        ):
            name = f'x_{facility.name}_{customer_name}'
            var = model.addVar(lb=lb,
                               ub=ub,
                               obj=unit_transport_cost,
                               vtype=grb.GRB.CONTINUOUS,
                               name=name,
                               column=None)
            facility_customer_to_column[(facility.name, customer_name)] = var

    return facility_customer_to_column
 def init_model(self, **kwargs):
     greedy_start = kwargs.get("greedy_start", True)
     verbose = kwargs.get("verbose", False)
     use_cliques = kwargs.get("use_cliques", False)
     if greedy_start:
         if verbose:
             print("Computing greedy solution")
         greedy_solver = GreedyColoring(self.coloring_problem,
                                        params_objective_function=self.params_objective_function)
         result_store = greedy_solver.solve(strategy=NXGreedyColoringMethod.best, verbose=verbose)
         self.start_solution = result_store.get_best_solution_fit()[0]
     else:
         if verbose:
             print("Get dummy solution")
         solution = self.coloring_problem.get_dummy_solution()
         self.start_solution = solution
     nb_colors = self.start_solution.nb_color
     color_model = Model("color")
     colors_var = {}
     range_node = range(self.number_of_nodes)
     range_color = range(nb_colors)
     for node in self.nodes_name:
         for color in range_color:
             colors_var[node, color] = color_model.addVar(vtype=GRB.BINARY,
                                                          obj=0,
                                                          name="x_" + str((node, color)))
     one_color_constraints = {}
     for n in range_node:
         one_color_constraints[n] = color_model.addConstr(quicksum([colors_var[n, c] for c in range_color]) == 1)
     color_model.update()
     cliques = []
     g = self.graph.to_networkx()
     if use_cliques:
         for c in nx.algorithms.clique.find_cliques(g):
             cliques += [c]
         cliques = sorted(cliques, key=lambda x: len(x), reverse=True)
     else:
         cliques = [[e[0], e[1]] for e in g.edges()]
     cliques_constraint = {}
     index_c = 0
     opt = color_model.addVar(vtype=GRB.INTEGER, lb=0, ub=nb_colors, obj=1)
     if use_cliques:
         for c in cliques[:100]:
             cliques_constraint[index_c] = color_model.addConstr(quicksum([(color_i + 1) * colors_var[node, color_i]
                                                                           for node in c
                                                                           for color_i in range_color])
                                                                 >= sum([i + 1 for i in range(len(c))]))
             cliques_constraint[(index_c, 1)] = color_model.addConstr(quicksum([colors_var[node, color_i]
                                                                               for node in c
                                                                               for color_i in range_color])
                                                                      <= opt)
             index_c += 1
     edges = g.edges()
     constraints_neighbors = {}
     for e in edges:
         for c in range_color:
             constraints_neighbors[(e[0], e[1], c)] = \
                 color_model.addConstr(colors_var[e[0], c] + colors_var[e[1], c] <= 1)
     for n in range_node:
         color_model.addConstr(quicksum([(color_i + 1) * colors_var[n, color_i] for color_i in range_color]) <= opt)
     color_model.update()
     color_model.modelSense = GRB.MINIMIZE
     color_model.setParam(GRB.Param.Threads, 8)
     color_model.setParam(GRB.Param.PoolSolutions, 10000)
     color_model.setParam(GRB.Param.Method, -1)
     color_model.setParam("MIPGapAbs", 0.001)
     color_model.setParam("MIPGap", 0.001)
     color_model.setParam("Heuristics", 0.01)
     self.model = color_model
     self.variable_decision = {"colors_var": colors_var}
     self.constraints_dict = {"one_color_constraints": one_color_constraints,
                              "constraints_neighbors": constraints_neighbors}
     self.description_variable_description = {"colors_var": {"shape": (self.number_of_nodes, nb_colors),
                                                             "type": bool,
                                                             "descr": "for each node and each color,"
                                                                      " a binary indicator"}}
     self.description_constraint["one_color_constraints"] = {"descr": "one and only one color "
                                                                      "should be assignated to a node"}
     self.description_constraint["constraints_neighbors"] = {"descr": "no neighbors can have same color"}
예제 #5
0
class LPKnapsackGurobi(SolverDO):
    def __init__(self,
                 knapsack_model: KnapsackModel,
                 params_objective_function: ParamsObjectiveFunction = None):
        self.knapsack_model = knapsack_model
        self.model = None
        self.variable_decision = {}
        self.constraints_dict = {}
        self.description_variable_description = {}
        self.description_constraint = {}
        self.aggreg_sol, self.aggreg_dict, self.params_objective_function = \
            build_aggreg_function_and_params_objective(problem=self.knapsack_model,
                                                       params_objective_function=params_objective_function)

    def init_model(self, **args):
        warm_start = args.get('warm_start', {})
        self.model = Model("Knapsack")
        self.variable_decision = {"x": {}}
        self.description_variable_description = {
            "x": {
                "shape":
                self.knapsack_model.nb_items,
                "type":
                bool,
                "descr":
                "dictionary with key the item index \
                                                                 and value the boolean value corresponding \
                                                                 to taking the item or not"
            }
        }
        self.description_constraint["weight"] = {
            "descr": "sum of weight of used items doesn't exceed max capacity"
        }
        weight = {}
        list_item = self.knapsack_model.list_items
        max_capacity = self.knapsack_model.max_capacity
        x = {}
        for item in list_item:
            i = item.index
            x[i] = self.model.addVar(vtype=GRB.BINARY,
                                     obj=item.value,
                                     name="x_" + str(i))
            if i in warm_start:
                x[i].start = warm_start[i]
                x[i].varhinstval = warm_start[i]
            weight[i] = item.weight
        self.variable_decision["x"] = x
        self.model.update()
        self.constraints_dict["weight"] = self.model.addConstr(
            quicksum([weight[i] * x[i] for i in x]) <= max_capacity)
        self.model.update()
        self.model.setParam("TimeLimit", 200)
        self.model.modelSense = GRB.MAXIMIZE
        self.model.setParam(GRB.Param.PoolSolutions, 10000)
        self.model.setParam("MIPGapAbs", 0.00001)
        self.model.setParam("MIPGap", 0.00000001)

    def retrieve_solutions(self, range_solutions: Iterable[int]):
        # nObjectives = S.NumObj
        solutions = []
        fits = []
        # x = S.getVars()
        for s in range_solutions:
            weight = 0
            xs = {}
            self.model.params.SolutionNumber = s
            obj = self.model.getAttr("ObjVal")
            for e in self.variable_decision["x"]:
                value = self.variable_decision["x"][e].getAttr('Xn')
                if value <= 0.1:
                    xs[e] = 0
                    continue
                xs[e] = 1
                weight += self.knapsack_model.index_to_item[e].weight
            solutions += [
                KnapsackSolution(problem=self.knapsack_model,
                                 value=obj,
                                 weight=weight,
                                 list_taken=[xs[e] for e in sorted(xs)])
            ]
            fits += [self.aggreg_sol(solutions[-1])]
        return ResultStorage(
            list_solution_fits=[(s, f) for s, f in zip(solutions, fits)],
            mode_optim=self.params_objective_function.sense_function)

    def solve(self, parameter_gurobi: ParametersMilp):
        self.model.setParam("TimeLimit", parameter_gurobi.TimeLimit)
        self.model.modelSense = GRB.MAXIMIZE
        self.model.setParam(GRB.Param.PoolSolutions,
                            parameter_gurobi.PoolSolutions)
        self.model.setParam("MIPGapAbs", parameter_gurobi.MIPGapAbs)
        self.model.setParam("MIPGap", parameter_gurobi.MIPGap)
        print("optimizing...")
        self.model.optimize()
        nSolutions = self.model.SolCount
        nObjectives = self.model.NumObj
        objective = self.model.getObjective().getValue()
        print('Problem has', nObjectives, 'objectives')
        print('Gurobi found', nSolutions, 'solutions')
        if parameter_gurobi.retrieve_all_solution:
            solutions = self.retrieve_solutions(list(range(nSolutions)))
        else:
            solutions = self.retrieve_solutions([0])
        return solutions

    def solve_lns(self, parameter_gurobi: ParametersMilp,
                  init_solution: KnapsackSolution,
                  fraction_decision_fixed: float, nb_iteration_max: int):
        self.model.setParam("TimeLimit", parameter_gurobi.TimeLimit)
        self.model.setParam("OutputFlag", 0)
        self.model.modelSense = GRB.MAXIMIZE
        self.model.setParam(GRB.Param.PoolSolutions,
                            parameter_gurobi.PoolSolutions)
        self.model.setParam("MIPGapAbs", parameter_gurobi.MIPGapAbs)
        self.model.setParam("MIPGap", parameter_gurobi.MIPGap)
        current_solution = init_solution
        constraints = {}
        list_solutions = [current_solution]
        list_objective = [current_solution.value]
        objective = init_solution.value
        for k in trange(nb_iteration_max):
            for c in constraints:
                self.model.remove(constraints[c])
            self.add_init_solution(current_solution)
            fixed_variable = set(
                random.sample(
                    self.variable_decision["x"].keys(),
                    int(fraction_decision_fixed *
                        len(self.variable_decision["x"]))))
            constraints = self.fix_decision(current_solution, fixed_variable)
            self.model.optimize()
            nSolutions = self.model.SolCount
            nObjectives = self.model.NumObj
            objective = self.model.getObjective().getValue()
            if parameter_gurobi.retrieve_all_solution:
                solutions = self.retrieve_solutions(list(range(nSolutions)))
            else:
                solutions = self.retrieve_solutions([0])
            current_solution = solutions[0]
            list_solutions += [solutions[0]]
            list_objective += [solutions[0].value]
        print("Last obj : ", list_objective[-1])
        fig, ax = plt.subplots(1)
        ax.plot(list_objective)
        plt.show()

    def add_init_solution(self, init_solution: KnapsackSolution):
        for i in self.variable_decision["x"]:
            self.variable_decision["x"][i].start = init_solution.list_taken[i]
            self.variable_decision["x"][
                i].varhintval = init_solution.list_taken[i]

    def fix_decision(self, init_solution: KnapsackSolution,
                     fixed_variable_keys):
        constraints = {}
        for i in fixed_variable_keys:
            constraints[i] = self.model.addConstr(
                self.variable_decision["x"][i] == init_solution.list_taken[i])
        return constraints

    def describe_the_model(self):
        return str(self.description_variable_description) + "\n" + str(
            self.description_constraint)
 def init_model(self, **kwargs):
     nb_facilities = self.facility_problem.facility_count
     nb_customers = self.facility_problem.customer_count
     use_matrix_indicator_heuristic = kwargs.get("use_matrix_indicator_heuristic", True)
     if use_matrix_indicator_heuristic:
         n_shortest = kwargs.get("n_shortest", 10)
         n_cheapest = kwargs.get("n_cheapest", 10)
         matrix_fc_indicator, matrix_length = prune_search_space(self.facility_problem,
                                                                 n_cheapest=n_cheapest,
                                                                 n_shortest=n_shortest)
     else:
         matrix_fc_indicator, matrix_length = prune_search_space(self.facility_problem,
                                                                 n_cheapest=nb_facilities,
                                                                 n_shortest=nb_facilities)
     s = Model("facilities")
     x = {}
     for f in range(nb_facilities):
         for c in range(nb_customers):
             if matrix_fc_indicator[f, c] == 0:
                 x[f, c] = 0
             elif matrix_fc_indicator[f, c] == 1:
                 x[f, c] = 1
             elif matrix_fc_indicator[f, c] == 2:
                 x[f, c] = s.addVar(vtype=GRB.BINARY,
                                    obj=0,
                                    name="x_" + str((f, c)))
     facilities = self.facility_problem.facilities
     customers = self.facility_problem.customers
     used = s.addVars(nb_facilities, vtype=GRB.BINARY, name="y")
     constraints_customer = {}
     for c in range(nb_customers):
         constraints_customer[c] = s.addConstr(quicksum([x[f, c] for f in range(nb_facilities)]) == 1)
         # one facility
     constraint_capacity = {}
     for f in range(nb_facilities):
         s.addConstrs(used[f] >= x[f, c] for c in range(nb_customers))
         constraint_capacity[f] = s.addConstr(quicksum([x[f, c] * customers[c].demand
                                                        for c in range(nb_customers)]) <= facilities[f].capacity)
     s.update()
     new_obj_f = LinExpr(0.)
     new_obj_f += quicksum([facilities[f].setup_cost * used[f] for f in range(nb_facilities)])
     new_obj_f += quicksum([matrix_length[f, c] * x[f, c]
                            for f in range(nb_facilities)
                            for c in range(nb_customers)])
     s.setObjective(new_obj_f)
     s.update()
     s.modelSense = GRB.MINIMIZE
     s.setParam(GRB.Param.Threads, 4)
     s.setParam(GRB.Param.PoolSolutions, 10000)
     s.setParam(GRB.Param.Method, 1)
     s.setParam("MIPGapAbs", 0.00001)
     s.setParam("MIPGap", 0.00000001)
     self.model = s
     self.variable_decision = {"x": x}
     self.constraints_dict = {"constraint_customer": constraints_customer,
                              "constraint_capacity": constraint_capacity}
     self.description_variable_description = {"x": {"shape": (nb_facilities, nb_customers),
                                                    "type": bool,
                                                    "descr": "for each facility/customer indicate"
                                                             " if the pair is active, meaning "
                                                             "that the customer c is dealt with facility f"}}
     self.description_constraint = {"Im lazy."}
     print("Initialized")