예제 #1
0
    def __init__(
        self,
        q,
        name="nrsur7dq2",
        total_mass=None,
        spin_1=None,
        spin_2=None,
        distance=None,
        l_max=4,
        modes=None,
        times=None,
        minimum_frequency=10,
        sampling_frequency=4096,
    ):
        """
        Initialise Surrogate MemoryGenerator

        Parameters
        ----------
        name: str
            Name of the surrogate, default=NRSur7dq2.
        l_max: int
            Maximum ell value for oscillatory time series.
        modes: dict, optional
            Modes to load in, default is all ell<=4.
        q: float
            Binary mass ratio
        total_mass: float, optional
            Total binary mass in solar units.
        distance: float, optional
            Distance to the binary in MPC.
        spin_1: array-like
            Spin vector of more massive black hole.
        spin_2: array-like
            Spin vector of less massive black hole.
        times: array-like
            Time array to evaluate the waveforms on, default is
            np.linspace(-900, 100, 10001).
        """
        self.name = name

        if name.lower() == "nrsur7dq2":
            try:
                from NRSur7dq2 import NRSurrogate7dq2
            except ModuleNotFoundError:
                print(
                    "nrsur7sq2 is required for the Surrogate memory generator."
                )
                raise

            self.sur = NRSurrogate7dq2()

            if q < 1:
                q = 1 / q
            if q > 2:
                print("WARNING: Surrogate waveform not tested for q>2.")
            self.q = q
            self.MTot = total_mass
            if spin_1 is None:
                self.S1 = np.array([0.0, 0.0, 0.0])
            else:
                self.S1 = np.array(spin_1)
            if spin_2 is None:
                self.S2 = np.array([0.0, 0.0, 0.0])
            else:
                self.S2 = np.array(spin_2)

        elif name.lower() == "nrhybsur3dq8":
            try:
                import gwsurrogate
            except ModuleNotFoundError:
                print(
                    "gwsurrogate is required for the Surrogate memory generator."
                )
                raise

            self.sur = gwsurrogate.LoadSurrogate("NRHybSur3dq8")
            if q < 1:
                q = 1 / q
            if q > 8:
                print(
                    "WARNING: Hybrdid surrogate waveform not tested for q>8.")
            self.q = q
            self.MTot = total_mass
            if spin_1 is None:
                self.chi_1 = 0.0
            else:
                self.chi_1 = spin_1
            if spin_2 is None:
                self.chi_2 = 0.0
            else:
                self.chi_2 = spin_2
            self.minimum_frequency = minimum_frequency
            self.sampling_frequency = sampling_frequency
        else:
            raise ValueError(
                "Surrogate model {} not implemented.".format(name))
        self.distance = distance
        self.LMax = l_max
        self.modes = modes

        if total_mass is None:
            self.h_to_geo = 1
            self.t_to_geo = 1
        else:
            self.h_to_geo = self.distance * MPC / self.MTot / SOLAR_MASS / GG * CC**2
            self.t_to_geo = 1 / self.MTot / SOLAR_MASS / GG * CC**3

        self.h_lm = None
        self.times = times

        if times is not None and max(times) < 10:
            times *= self.t_to_geo

        h_lm, times = self.time_domain_oscillatory(modes=modes, times=times)

        MemoryGenerator.__init__(self, name=name, h_lm=h_lm, times=times)
예제 #2
0
import numpy as np
import gwsurrogate

gwsurrogate.catalog.pull('NRSur7dq4')

sur = gwsurrogate.LoadSurrogate('NRSur7dq4')

예제 #3
0
 def _load_NRSur7dq4(self):
     import gwsurrogate
     from gwsurrogate.new.precessing_surrogate import splinterp_many
     self.nrsur = gwsurrogate.LoadSurrogate('NRSur7dq4')
     self.splinterp_many = splinterp_many
예제 #4
0
    def __init__(self,
                 q,
                 name='nrsur7dq2',
                 total_mass=None,
                 spin_1=None,
                 spin_2=None,
                 distance=None,
                 l_max=4,
                 modes=None,
                 times=None,
                 minimum_frequency=10,
                 sampling_frequency=4096):
        """
        Initialise Surrogate MemoryGenerator

        Parameters
        ----------
        name: str
            Name of the surrogate, default=NRSur7dq2.
        l_max: int
            Maximum ell value for oscillatory time series.
        modes: dict, optional
            Modes to load in, default is all ell<=4.
        q: float
            Binary mass ratio
        total_mass: float, optional
            Total binary mass in solar units.
        distance: float, optional
            Distance to the binary in MPC.
        spin_1: array-like
            Spin vector of more massive black hole.
        spin_2: array-like
            Spin vector of less massive black hole.
        times: array-like
            Time array to evaluate the waveforms on, default is
            np.linspace(-900, 100, 10001).
        """
        self.name = name

        # sur(x, dt=dt, f_low=f_low, mode_list=[(2,2), (2,1), (3, 3)], M=M, dist_mpc=dist_mpc,
        #            inclination=inclination, phi_ref=phi_ref, units='mks')
        # h_lm = self.sur(self.q, self.S1, self.S2, MTot=self.MTot,
        #                 distance=self.distance, t=times, LMax=self.LMax)
        if name.lower() == "nrsur7dq2":
            from NRSur7dq2 import NRSurrogate7dq2
            self.sur = NRSurrogate7dq2()

            if q < 1:
                q = 1 / q
            if q > 2:
                print('WARNING: Surrogate waveform not tested for q>2.')
            self.q = q
            self.MTot = total_mass
            if spin_1 is None:
                self.S1 = np.array([0., 0., 0.])
            else:
                self.S1 = np.array(spin_1)
            if spin_2 is None:
                self.S2 = np.array([0., 0., 0.])
            else:
                self.S2 = np.array(spin_2)

        elif name.lower() == "nrsur7dq4":
            import gwsurrogate
            gwsurrogate.catalog.pull('NRSur7dq4')
            self.sur = gwsurrogate.LoadSurrogate('NRSur7dq4')

            if q < 1:
                q = 1 / q
            if q > 4:
                print(
                    'WARNING: Hybrdid surrogate waveform not tested for q>4.')
            self.q = q
            self.Mtot = total_mass
            if spin_1 is None:
                self.chi_1 = 0.0
            else:
                self.chi_1 = spin_1
            if spin_2 is None:
                self.chi_2 = 0.0
            else:
                self.chi_2 = spin_2
            self.minimum_frequency = minimum_frequency
            self.sampling_frequency = sampling_frequency

        elif name.lower() == "nrhybsur3dq8":
            import gwsurrogate
            self.sur = gwsurrogate.LoadSurrogate('NRHybSur3dq8')
            if q < 1:
                q = 1 / q
            if q > 8:
                print(
                    'WARNING: Hybrdid surrogate waveform not tested for q>8.')
            self.q = q
            self.MTot = total_mass
            if spin_1 is None:
                self.chi_1 = 0.0
            else:
                self.chi_1 = spin_1
            if spin_2 is None:
                self.chi_2 = 0.0
            else:
                self.chi_2 = spin_2
            self.minimum_frequency = minimum_frequency
            self.sampling_frequency = sampling_frequency
        else:
            raise ValueError(
                "Surrogate model {} not implemented.".format(name))
        self.distance = distance
        self.LMax = l_max
        self.modes = modes

        if total_mass is None:
            self.h_to_geo = 1
            self.t_to_geo = 1
        else:
            self.h_to_geo = self.distance * MPC / self.MTot /\
                SOLAR_MASS / GG * CC ** 2
            self.t_to_geo = 1. / self.MTot / SOLAR_MASS / GG * CC**3

        self.h_lm = None
        self.times = None

        if times is not None and max(times) < 10:
            times *= self.t_to_geo

        h_lm, times = self.time_domain_oscillatory(modes=modes, times=times)

        MemoryGenerator.__init__(self, name=name, h_lm=h_lm, times=times)
예제 #5
0
    def __init__(self):

        if not os.path.exists(gwsurrogate.__path__[0]+'/surrogate_downloads/NRHybSur3dq8.h5'):
            gwsurrogate.catalog.pull('NRHybSur3dq8')

        self.sur    = gwsurrogate.LoadSurrogate('NRHybSur3dq8Tidal')
예제 #6
0
    def __init__(self):

        if not os.path.exists(gwsurrogate.__path__[0]+'/surrogate_downloads/NRSur7dq4.h5'):
            gwsurrogate.catalog.pull('NRSur7dq4')

        self.sur    = gwsurrogate.LoadSurrogate('NRSur7dq4')
예제 #7
0
def test_model_regression(generate_regression_data=False):
    """ If generate_regression_data = True, this script will generate 
  an hdf5 file to diff against. No regression will be done.

  If generate_regression_data = False, this script will compare 
  model evaluations to the hdf5 file produced when True. In a typical use case,
  this regression file will be downloaded. """

    if generate_regression_data:
        h5_file = "model_regression_data.h5"
        print(
            "Generating regression data file... Make sure this step is done BEFORE making any code changes!\n"
        )
        print(os.path.exists(h5_file))
        if os.path.exists(h5_file):
            raise RuntimeError("Refusing to overwrite a regression file!")
    else:
        h5_file = "test/comparison_data.h5"  # assumes pytest runs from project-level folder
        try:  # try importing data. If it doesn't exist, download it
            fp_regression = h5py.File("test/model_regression_data.h5", 'r')
        except IOError:
            print("Downloading regression data...")
            os.system(
                'wget --directory-prefix=test https://www.dropbox.com/s/vxqsr7fjoffxm5w/model_regression_data.h5'
            )
            fp_regression = h5py.File("test/model_regression_data.h5", 'r')

    # remove models if you don't have them
    dont_test = [
        "EMRISur1dq1e4",  # model data not currently available in public
        "NRSur4d2s_TDROM_grid12",  # 10 GB file
        "NRSur4d2s_FDROM_grid12",  # 10 GB file
        #"SpEC_q1_10_NoSpin_linear_alt",
        #"SpEC_q1_10_NoSpin_linear",
        "EOBNRv2",  #TODO: this is two surrogates in one. Break up?
        #"SpEC_q1_10_NoSpin",
        #"EOBNRv2_tutorial",
        #"NRHybSur3dq8",
        #"NRHybSur3dq8Tidal",
        #"NRSur7dq4"
    ]

    # Common directory where all surrogates are assumed to be located
    surrogate_path = gws.catalog.download_path()

    # repeatability can be useful for regression tests
    np.random.seed(0)

    # for each model, associate its surrogate data file
    models = [model for model in gws.catalog._surrogate_world]
    print(models)

    models_to_test = {}
    for model in models:
        surrogate_data = surrogate_path + os.path.basename(
            gws.catalog._surrogate_world[model][0])
        if os.path.isfile(surrogate_data):  # surrogate data file exists
            models_to_test[model] = surrogate_data
        else:  # file missing
            msg = "WARNING: Surrogate missing!!!\n"
            msg += "Surrogate data assumed to be in the path %s.\n" % surrogate_data
            msg += "If the data is somewhere else, change the path or move the file.\n\n"
            msg += "To download this surrogate, from ipython do\n\n >>> gws.catalog.pull(%s)\n" % model
            print(msg)
            time.sleep(1)

    # also test the tutorial surrogate
    models_to_test["EOBNRv2_tutorial"] = gws.__path__[
        0] + "/../tutorial/TutorialSurrogate/EOB_q1_2_NoSpin_Mode22/"

    # remove models from testing...
    for i in dont_test:
        try:
            models_to_test.pop(i)
            print("model %s removed from testing" % i)
        except KeyError:
            print("model %s cannot be removed" % i)

    fp = h5py.File(h5_file, "w")

    # for each model, select three random points to evaluate at
    param_samples_tested = []
    for model, datafile in models_to_test.items():

        print("Generating regression data for model = %s" % model)
        print(datafile)

        if model in surrogate_old_interface:
            sur = gws.EvaluateSurrogate(datafile)
            p_mins = sur.param_space.min_vals()
            p_maxs = sur.param_space.max_vals()
        elif model in surrogate_loader_interface:
            # sur = gws.LoadSurrogate(datafile) # tidal and aligned models use the same h5 file (so wrong one loaded)
            sur = gws.LoadSurrogate(model)
            try:
                p_mins = sur._sur_dimless.param_space.min_vals()
                p_maxs = sur._sur_dimless.param_space.max_vals()
            except AttributeError:  # NRSur7dq4 does not have object sur._sur_dimless.param_space
                p_mins = None
                p_maxs = None
        else:
            sur = surrogate.FastTensorSplineSurrogate()
            sur.load(datafile)
            p_mins = sur.param_space.min_vals()
            p_maxs = sur.param_space.max_vals()

        print("parameter minimum values", p_mins)
        print("parameter maximum values", p_maxs)

        param_samples = []
        if generate_regression_data:  # pick new points to compute regression data at
            for i in range(3):  # sample parameter space 3 times
                if model in list(model_sampler.keys()):
                    custom_sampler = model_sampler[model]
                    x, tidOpts, pecOpts = custom_sampler(
                        i)  # [q, chiA, chiB], tidOpts
                else:  # default sampler for spin-aligned BBH models
                    x = []  # [q, chiAz, chiBz]
                    for j in range(len(p_mins)):
                        xj_min = p_mins[j]
                        xj_max = p_maxs[j]
                        tmp = float(np.random.uniform(xj_min, xj_max, size=1))
                        x.append(tmp)
                    tidOpts = None
                    pecOpts = None
                param_samples.append([x, tidOpts, pecOpts])
        else:  # get point at which to compute comparison waveform data
            for i in range(3):
                if model in list(
                        model_sampler.keys()):  # use sample points if provided
                    custom_sampler = model_sampler[model]
                    x, tidOpts, pecOpts = custom_sampler(
                        i)  # [q, chiA, chiB], tidOpts
                else:  # pull regression points from regression data file; none-tidal models only
                    print(model + "/parameter%i/parameter" % i)
                    x = []
                    x.append(
                        list(fp_regression[model + "/parameter%i/parameter" %
                                           i][:]))  # [q, chiAz, chiBz]
                    x = list(fp_regression[model + "/parameter%i/parameter" %
                                           i][:])  # [q, chiAz, chiBz]
                    tidOpts = None
                    pecOpts = None
                param_samples.append([x, tidOpts, pecOpts])

        param_samples_tested.append(param_samples)

        model_grp = fp.create_group(model)
        for i, ps in enumerate(param_samples):
            x = ps[0]
            tidOpts = ps[1]
            pecOpts = ps[2]
            if model in surrogate_old_interface:
                ps_float = x[0]  # TODO: generalize interface
                modes, t, hp, hc = sur(q=ps_float,
                                       mode_sum=False,
                                       fake_neg_modes=True)
            else:
                if model in surrogate_loader_interface:
                    q = x[0]
                    if type(x[1]) is np.float64 or type(x[1]) is float:  # chiz
                        chiA = np.array([0, 0, x[1]])
                        chiB = np.array([0, 0, x[2]])
                    elif len(x[1]) == 3:  # spin vector
                        chiA = np.array(x[1])
                        chiB = np.array(x[2])
                    else:
                        raise ValueError
                    try:
                        # Regression samples outside of the training interval.
                        # Warnings are raised (as they should) but could
                        # appear bad to a new user
                        if model in ["NRSur7dq4"]:
                            with warnings.catch_warnings():
                                warnings.simplefilter("ignore")
                                t, h, dyanmics = sur(q,
                                                     chiA,
                                                     chiB,
                                                     f_low=0.0,
                                                     tidal_opts=tidOpts,
                                                     precessing_opts=pecOpts)
                        else:
                            t, h, dyanmics = sur(q,
                                                 chiA,
                                                 chiB,
                                                 f_low=0.0,
                                                 tidal_opts=tidOpts,
                                                 precessing_opts=pecOpts)
                    except ValueError:  # some models do not allow for f_low=0.0 and require a time step
                        # step size, Units of M
                        # initial frequency, Units of cycles/M
                        t, h, dyanmics = sur(q,
                                             chiA,
                                             chiB,
                                             dt=0.25,
                                             f_low=3.e-3,
                                             tidal_opts=tidOpts,
                                             precessing_opts=pecOpts)
                else:
                    h = sur(x)
                try:
                    h_np = [h[mode] for mode in sur.mode_list]
                except AttributeError:  # for new interface
                    h_np = [h[mode] for mode in sur._sur_dimless.mode_list]

                h_np = np.vstack(h_np)
                hp = np.real(h_np)
                hc = np.imag(h_np)
            samplei = model_grp.create_group("parameter" + str(i))
            if model in list(model_sampler.keys()):
                # model samplers return a list of lists, which we flatten into
                # a list of numbers for storing in an h5 dataset
                x = flatten_params(x)
            samplei.create_dataset("parameter", data=x)
            samplei.create_dataset("hp", data=hp, dtype='float32')
            samplei.create_dataset("hc", data=hc, dtype='float32')

    fp.close()

    if not generate_regression_data:
        fp = h5py.File(h5_file, "r")  # reopen comparison data
        for model in models_to_test.keys():
            print("testing model %s ..." % model)
            for i in range(3):  # 3 parameter samples
                hp_regression = fp_regression[model + "/parameter%i/hp" % i][:]
                hc_regression = fp_regression[model + "/parameter%i/hp" % i][:]
                hp_comparison = fp[model + "/parameter%i/hp" % i][:]
                hc_comparison = fp[model + "/parameter%i/hp" % i][:]
                if model == "NRHybSur3dq8":
                    local_rtol = rtol_gsl
                else:
                    local_rtol = rtol_gsl
                np.testing.assert_allclose(hp_regression,
                                           hp_comparison,
                                           rtol=local_rtol,
                                           atol=atol)
                np.testing.assert_allclose(hc_regression,
                                           hc_comparison,
                                           rtol=local_rtol,
                                           atol=atol)

        # fails due to round-off error differences of different machines
        #fp_regression.close()
        #process = subprocess.Popen(["h5diff", "test/model_regression_data.h5",h5_file],
        #                           stdin=subprocess.PIPE,
        #                           stdout=subprocess.PIPE,
        #                           stderr=subprocess.PIPE)
        #returncode = process.wait()
        #stdout, stderr = process.communicate()
        #if returncode == 0:
        #    assert(True)
        #else:
        #    print(stdout)
        #    print(stderr)
        #    assert(False)
    print("models tested... ")