def __init__(self, nvec): """ nvec: vector of counts of each categorical variable """ self.nvec = np.asarray(nvec, dtype=np.int32) assert self.nvec.ndim == 1, 'nvec should be a 1d array (or list) of ints' Space.__init__(self, (self.nvec.size, ), np.int8)
def __init__(self, spaces): if isinstance(spaces, dict): spaces = OrderedDict(sorted(list(spaces.items()))) if isinstance(spaces, list): spaces = OrderedDict(spaces) self.spaces = spaces Space.__init__(self, None, None) # None for shape and dtype, since it'll require special handling
def __init__(self, n, low=None, high=None): self._n = n self._low = low or -10000.0 self._high = high or 100000.0 Space.__init__(self, shape=(n,))
def __init__(self, n, low=None, high=None): self._n = n self._low = low self._high = high Space.__init__(self, shape=(n,))
def __init__(self, spaces): if isinstance(spaces, dict): spaces = OrderedDict(sorted(list(spaces.items()))) if isinstance(spaces, list): spaces = OrderedDict(spaces) self.spaces = spaces Space.__init__( self, None, None ) # None for shape and dtype, since it'll require special handling
def __init__(self, low=None, high=None, shape=None, dtype=np.float32): """ Two kinds of valid input: Box(low=-1.0, high=1.0, shape=(3,4)) # low and high are scalars, and shape is provided Box(np.array(low=[-1.0,-2.0]), high=np.array([2.0,4.0])) # low and high are arrays of the same shape """ if shape is None: assert low.shape == high.shape shape = low.shape else: assert np.isscalar(low) and np.isscalar(high) low = low + np.zeros(shape) high = high + np.zeros(shape) self.low = low.astype(dtype) self.high = high.astype(dtype) if (self.high == 255).all() and dtype != np.uint8: logger.warn('Box constructor got high=255 but dtype!=uint8') Space.__init__(self, shape, dtype)
def __init__(self, low=None, high=None, shape=None, dtype=None): """ Two kinds of valid input: Box(low=-1.0, high=1.0, shape=(3,4)) # low and high are scalars, and shape is provided Box(np.array(low=[-1.0,-2.0]), high=np.array([2.0,4.0])) # low and high are arrays of the same shape """ if shape is None: assert low.shape == high.shape shape = low.shape else: assert np.isscalar(low) and np.isscalar(high) low = low + np.zeros(shape) high = high + np.zeros(shape) if dtype is None: # Autodetect type if (high == 255).all(): dtype = np.uint8 else: dtype = np.float32 logger.warn( "gym.spaces.Box autodetected dtype as %s. Please provide explicit dtype." % dtype) self.low = low.astype(dtype) self.high = high.astype(dtype) Space.__init__(self, shape, dtype)
def __init__(self, n): self.n = n Space.__init__(self, (), np.int64)
def __init__(self, n): self.n = n Space.__init__(self, (self.n, ), np.int8)
def __init__(self, spaces): self.spaces = spaces Space.__init__(self, None, None)
def __init__(self, n): self.n = n Space.__init__(self, (self.n,), np.int8)