예제 #1
0
    def random_checkpoint_world(self):
        # Map
        self.rb = RingBuilding(
            Point(world_width / 2, world_height / 2), 50,
            1 + np.sqrt((world_width)**2 + (world_height)**2), 'gray80')

        # Car
        self.c1 = Car(Point(world_width / 2, world_height / 2), np.pi / 2)
        self.c1.max_speed = 30.0  # let's say the maximum is 30 m/s (108 km/h)
        self.c1.velocity = Point(0, 3.0)
        self.c1.name = "agent"
        self.ppm = 6

        # Checkpoint
        r = 50 * sqrt(random.uniform(0, 1))
        theta = random.uniform(0, 1) * 2 * np.pi
        x = world_height / 2 + r * np.cos(theta)
        y = world_width / 2 + r * np.sin(theta)
        self.checkpoint = CheckPointAgent(Point(x, y), 10, color="orange")
        # self.checkpoint = CheckPointAgent(Point(world_height/2, world_width/2+60), 10, color="orange")

        self.init_dist_to_cp = self.c1.distanceTo(self.checkpoint)

        # Add elements to map (order matters for visuals (only for non-movable objects)
        self.w.add(self.rb)
        self.w.add(self.checkpoint)
        self.w.add(self.c1)
예제 #2
0
 def buildGeometry(self):
     self.obj = []
     for i in range(self.precision):
         self.obj.append(
             Line(
                 Point(self.list_points[i][0], self.list_points[i][1]),
                 Point(self.list_points[i + 1][0],
                       self.list_points[i + 1][1])))
예제 #3
0
 def corners(self):
     ec = self.edge_centers
     c = np.array([self.center.x, self.center.y])
     corners = []
     corners.append(Point(*(ec[1] + ec[0] - c)))
     corners.append(Point(*(ec[2] + ec[1] - c)))
     corners.append(Point(*(ec[3] + ec[2] - c)))
     corners.append(Point(*(ec[0] + ec[3] - c)))
     return corners
예제 #4
0
    def tick(self, dt: float):
        if self.movable and self.inertia:  # cars and pedestrians
            speed = self.speed
            heading = self.heading

            # Kinematic bicycle model dynamics based on
            # "Kinematic and Dynamic Vehicle Models for Autonomous Driving Control Design" by
            # Jason Kong, Mark Pfeiffer, Georg Schildbach, Francesco Borrelli
            lr = self.rear_dist
            lf = lr  # we assume the center of mass is the same as the geometric center of the entity
            beta = np.arctan(lr / (lf + lr) * np.tan(self.inputSteering))

            new_angular_velocity = speed * self.inputSteering  # this is not needed and used for this model, but let's keep it for consistency (and to avoid if-else statements)
            new_acceleration = self.inputAcceleration - self.friction
            new_speed = np.clip(speed + new_acceleration * dt, self.min_speed,
                                self.max_speed)
            new_heading = heading + (
                (speed + new_speed) / lr) * np.sin(beta) * dt / 2.
            angle = (heading + new_heading) / 2. + beta
            new_center = self.center + (speed + new_speed) * Point(
                np.cos(angle), np.sin(angle)) * dt / 2.
            new_velocity = Point(new_speed * np.cos(new_heading),
                                 new_speed * np.sin(new_heading))
            '''
            # Point-mass dynamics based on
            # "Active Preference-Based Learning of Reward Functions" by
            # Dorsa Sadigh, Anca D. Dragan, S. Shankar Sastry, Sanjit A. Seshia
            
            new_angular_velocity = speed * self.inputSteering
            new_acceleration = self.inputAcceleration - self.friction * speed
            
            new_heading = heading + (self.angular_velocity + new_angular_velocity) * dt / 2.
            new_speed = np.clip(speed + (self.acceleration + new_acceleration) * dt / 2., self.min_speed, self.max_speed)
            
            new_velocity = Point(((speed + new_speed) / 2.) * np.cos((new_heading + heading) / 2.),
                                    ((speed + new_speed) / 2.) * np.sin((new_heading + heading) / 2.))
            
            new_center = self.center + (self.velocity + new_velocity) * dt / 2.
            
            '''

            self.center = new_center
            self.heading = np.mod(
                new_heading,
                2 * np.pi)  # wrap the heading angle between 0 and +2pi
            self.velocity = new_velocity
            self.acceleration = new_acceleration
            self.angular_velocity = new_angular_velocity

            self.buildGeometry()
예제 #5
0
 def __init__(self, center: Point, heading: float, color: str = 'red'):
     size = Point(4., 2.)
     movable = True
     friction = 0.0
     super(Car, self).__init__(center, heading, size, movable, friction)
     self.color = color
     self.collidable = True
     self.inertia = True
     self.distance_travelled = 0
     self.name = "npc"
예제 #6
0
 def __init__(self,
              center: Point,
              heading: float,
              movable: bool = True,
              friction: float = 0):
     self.center = center  # this is x, y
     self.heading = heading
     self.movable = movable
     self.color = 'ghost white'
     self.collidable = True
     if movable:
         self.friction = friction
         self.velocity = Point(0, 0)  # this is xp, yp
         self.acceleration = 0  # this is vp (or speedp)
         self.angular_velocity = 0  # this is headingp
         self.inputSteering = 0
         self.inputAcceleration = 0
         self.max_speed = np.inf
         self.min_speed = 0
예제 #7
0
 def __init__(self,
              anchor: Point,
              text: str,
              center: Point = Point(0, 0),
              heading: float = 0,
              color: str = "black"):
     super(TextEntity, self).__init__(center, heading)
     self.anchor = anchor
     self.text = text
     self.color = color
     self.buildGeometry()
예제 #8
0
 def __init__(self,
              p1: Point,
              p2: Point,
              range_sensors: int,
              center: Point = Point(0, 0),
              heading: float = 0,
              color: str = 'green'):
     super(SensorEntity, self).__init__(center, heading)
     self.p1 = p1
     self.p2 = p2
     self.range_sensors = range_sensors
     self.color = color
     self.buildGeometry()
예제 #9
0
    def circular_world(self):
        # To create a circular road, we will add a CircleBuilding and then a RingBuilding around it
        self.cb = CircleBuilding(Point(world_width / 2, world_height / 2),
                                 inner_building_radius, 'gray80')
        self.w.add(self.cb)
        self.rb = RingBuilding(
            Point(world_width / 2, world_height / 2), inner_building_radius +
            num_lanes * lane_width + (num_lanes - 1) * lane_marker_width,
            1 + np.sqrt((world_width / 2)**2 + (world_height / 2)**2),
            'gray80')
        self.w.add(self.rb)

        # Let's also add some lane markers on the ground. This is just decorative. Because, why not.
        for lane_no in range(num_lanes - 1):
            self.lane_markers_radius = inner_building_radius + (
                lane_no + 1) * lane_width + (lane_no + 0.5) * lane_marker_width
            self.lane_marker_height = np.sqrt(
                2 * (self.lane_markers_radius**2) * (1 - np.cos(
                    (2 * np.pi) / (2 * num_of_lane_markers)))
            )  # approximate the circle with a polygon and then use cosine theorem
            for theta in np.arange(0, 2 * np.pi,
                                   2 * np.pi / num_of_lane_markers):
                self.dx = self.lane_markers_radius * np.cos(theta)
                self.dy = self.lane_markers_radius * np.sin(theta)
                self.w.add(
                    Painting(Point(world_width / 2 + self.dx,
                                   world_height / 2 + self.dy),
                             Point(lane_marker_width, self.lane_marker_height),
                             'white',
                             heading=theta))

        # A Car object is a dynamic object -- it can move. We construct it using its center location and heading angle.
        self.c1 = Car(Point(91.75, 60), np.pi / 2)
        self.c1.max_speed = 30.0  # let's say the maximum is 30 m/s (108 km/h)
        self.c1.velocity = Point(0, 3.0)
        self.c1.name = "agent"
        self.w.add(self.c1)
        self.ppm = 6
예제 #10
0
    def __init__(self, window_created: bool, win: GraphWin):

        self.window_created = window_created
        self.win = win
        self.w = World(
            dt, width=world_width, height=world_height, win=self.win, ppm=6
        )  # The world is 120 meters by 120 meters. ppm is the pixels per meter.

        # self.intersect_world()
        self.random_checkpoint_world()
        self.reward = 0

        # Sensors initialization
        self.range_sensors = 20  # 10 meters
        self.precision = 10  # sensors' resolution

        self.s1 = Sensors(
            Point(self.c1.edge_centers[0][0] * self.ppm,
                  self.c1.edge_centers[0][1] * self.ppm),
            Point(
                self.c1.edge_centers[0][0] * self.ppm +
                self.ppm * self.range_sensors * np.cos(self.c1.heading),
                (self.ppm * self.c1.edge_centers[0][1]) +
                self.ppm * self.range_sensors * np.sin(self.c1.heading)),
            self.range_sensors, "Front_Sensor", self.c1, self.precision)

        self.s2 = Sensors(
            Point(self.c1.corners[0].x * self.ppm,
                  self.c1.corners[0].y * self.ppm),
            Point(
                self.c1.corners[0].x * self.ppm + self.ppm *
                self.range_sensors * np.cos(self.c1.heading + np.pi / 4),
                (self.ppm * self.c1.corners[0].y) + self.ppm *
                self.range_sensors * np.sin(self.c1.heading + np.pi / 4)),
            self.range_sensors, "Diag_Left_Sensor", self.c1, self.precision)

        self.s3 = Sensors(
            Point(self.c1.corners[3].x * self.ppm,
                  self.c1.corners[3].y * self.ppm),
            Point(
                self.c1.corners[3].x * self.ppm + self.ppm *
                self.range_sensors * np.cos(self.c1.heading - np.pi / 4),
                (self.ppm * self.c1.corners[3].y) + self.ppm *
                self.range_sensors * np.sin(self.c1.heading - np.pi / 4)),
            self.range_sensors, "Diag_Right_Sensor", self.c1, self.precision)

        self.s4 = Sensors(
            Point(self.c1.edge_centers[1][0] * self.ppm,
                  self.c1.edge_centers[1][1] * self.ppm),
            Point(
                self.c1.edge_centers[1][0] * self.ppm + self.ppm *
                self.range_sensors * np.cos(self.c1.heading + np.pi / 2),
                (self.ppm * self.c1.edge_centers[1][1]) + self.ppm *
                self.range_sensors * np.sin(self.c1.heading + np.pi / 2)),
            self.range_sensors, "Mid_Left_Sensor", self.c1, self.precision)

        self.s5 = Sensors(
            Point(self.c1.edge_centers[3][0] * self.ppm,
                  self.c1.edge_centers[3][1] * self.ppm),
            Point(
                self.c1.edge_centers[3][0] * self.ppm + self.ppm *
                self.range_sensors * np.cos(self.c1.heading - np.pi / 2),
                (self.ppm * self.c1.edge_centers[3][1]) + self.ppm *
                self.range_sensors * np.sin(self.c1.heading - np.pi / 2)),
            self.range_sensors, "Mid_Right_Sensor", self.c1, self.precision)

        self.s6 = Sensors(
            Point(self.c1.edge_centers[0][0] * self.ppm,
                  self.c1.edge_centers[0][1] * self.ppm),
            Point(
                self.c1.edge_centers[0][0] * self.ppm + self.ppm *
                self.range_sensors * np.cos(self.c1.heading + np.pi / 12),
                (self.ppm * self.c1.edge_centers[0][1]) + self.ppm *
                self.range_sensors * np.sin(self.c1.heading + np.pi / 12)),
            self.range_sensors, "Front_Left_Sensor", self.c1, self.precision)

        self.s7 = Sensors(
            Point(self.c1.edge_centers[0][0] * self.ppm,
                  self.c1.edge_centers[0][1] * self.ppm),
            Point(
                self.c1.edge_centers[0][0] * self.ppm + self.ppm *
                self.range_sensors * np.cos(self.c1.heading + np.pi / 6),
                (self.ppm * self.c1.edge_centers[0][1]) + self.ppm *
                self.range_sensors * np.sin(self.c1.heading + np.pi / 6)),
            self.range_sensors, "Front_Left_Sensor_2", self.c1, self.precision)

        self.s8 = Sensors(
            Point(self.c1.edge_centers[0][0] * self.ppm,
                  self.c1.edge_centers[0][1] * self.ppm),
            Point(
                self.c1.edge_centers[0][0] * self.ppm + self.ppm *
                self.range_sensors * np.cos(self.c1.heading - np.pi / 12),
                (self.ppm * self.c1.edge_centers[0][1]) + self.ppm *
                self.range_sensors * np.sin(self.c1.heading - np.pi / 12)),
            self.range_sensors, "Front_Right_Sensor", self.c1, self.precision)

        self.s9 = Sensors(
            Point(self.c1.edge_centers[0][0] * self.ppm,
                  self.c1.edge_centers[0][1] * self.ppm),
            Point(
                self.c1.edge_centers[0][0] * self.ppm + self.ppm *
                self.range_sensors * np.cos(self.c1.heading - np.pi / 6),
                (self.ppm * self.c1.edge_centers[0][1]) + self.ppm *
                self.range_sensors * np.sin(self.c1.heading - np.pi / 6)),
            self.range_sensors, "Front_Right_Sensor_2", self.c1,
            self.precision)

        self.s1.collidable = False
        self.s2.collidable = False
        self.s3.collidable = False
        self.s4.collidable = False
        self.s5.collidable = False
        self.s6.collidable = False
        self.s7.collidable = False
        self.s8.collidable = False
        self.s9.collidable = False

        self.w.add(self.s1)
        self.w.add(self.s2)
        self.w.add(self.s3)
        self.w.add(self.s4)
        self.w.add(self.s5)
        self.w.add(self.s6)
        self.w.add(self.s7)
        self.w.add(self.s8)
        self.w.add(self.s9)

        self.listSensors = [
            self.s1, self.s2, self.s3, self.s4, self.s5, self.s6, self.s7,
            self.s8, self.s9
        ]

        self.agent_in_range = []
        self.agentBuilding = []
        for agent in self.w.static_agents:
            if (isinstance(agent, RectangleBuilding)
                    or isinstance(agent, CircleBuilding)
                    or isinstance(agent, RingBuilding)):
                self.agentBuilding.append(agent)

        # Add Text

        self.textTest = TextAgent(Point(5*world_width, 5*world_height), "Speed " + str(round(self.c1.speed, 3)) + "\n" \
            "Travelled distance " + str(round(self.c1.distance_travelled, 3)) + "\n" \
            "Reward " + str(round(self.reward, 3)))
        self.textTest.collidable = False
        self.w.add(self.textTest)
        '''
예제 #11
0
    def intersect_world(self):
        # Intersection map
        # Top right
        self.w.add(Painting(Point(81.5, 111.5), Point(97, 27),
                            'gray80'))  # We build a sidewalk.
        self.w.add(
            RectangleBuilding(Point(82.5, 112.5), Point(95, 25))
        )  # The RectangleBuilding is then on top of the sidewalk, with some margin.

        # Let's repeat this for 4 different RectangleBuildings.
        # Top Left
        self.w.add(Painting(Point(8.5, 111.5), Point(17, 27), 'gray80'))
        self.w.add(RectangleBuilding(Point(7.5, 112.5), Point(15, 25)))
        # Bottom Left
        self.w.add(Painting(Point(8.5, 41), Point(17, 82), 'gray80'))
        self.w.add(RectangleBuilding(Point(7.5, 40), Point(15, 80)))
        # Bottom Right
        self.w.add(Painting(Point(81.5, 41), Point(97, 82), 'gray80'))
        self.w.add(RectangleBuilding(Point(82.5, 40), Point(95, 80)))

        # # Let's also add some zebra crossings.
        # for i in range(0, 15, 2):
        #     self.w.add(Painting(Point(18+i, 81), Point(0.5, 2), 'white'))

        self.checkpoint = CheckPointAgent(Point(78, 85), np.pi, color="orange")
        self.w.add(self.checkpoint)

        # Let's also add some lane markers on the ground.
        for i in range(0, 81, 5):
            self.w.add(Painting(Point(25, i), Point(0.5, 3), 'white'))
            # self.w.add(Painting(Point(25, 100 + i), Point(0.5, 3), 'white'))
            self.w.add(Painting(Point(i + 35, 90), Point(3, 0.5), 'white'))
            # self.w.add(Painting(Point(i - 65, 90), Point(3, 0.5), 'white'))

        # A Car object is a dynamic object -- it can move. We construct it using its center location and heading angle.
        self.c1 = Car(Point(30, 35), np.pi / 2)
        self.c1.max_speed = 30.0  # let's say the maximum is 30 m/s (108 km/h)
        self.c1.velocity = Point(0, 3.0)
        self.c1.name = "agent"
        self.w.add(self.c1)
        self.ppm = 6

        self.c2 = Car(Point(118, 94), np.pi, 'blue')
        self.c2.velocity = Point(
            3.0, 0)  # We can also specify an initial velocity just like this.
        self.w.add(self.c2)

        # Pedestrian is almost the same as Car. It is a "circle" object rather than a rectangle.
        self.p1 = Pedestrian(Point(40, 81), np.pi)
        self.p1.max_speed = 10.0  # We can specify min_speed and max_speed of a Pedestrian (and of a Car). This is 10 m/s, almost Usain Bolt.
        self.p1.velocity = Point(-1, 0)
        self.w.add(self.p1)

        self.init_dist_to_cp = self.c1.distanceTo(self.checkpoint)

        # Pedestrian
        self.p1.velocity = Point(-1, 0)
예제 #12
0
    def action(self, action):
        rotation = 0.3
        acceleration = 3

        if action == 0:
            self.c1.set_control(rotation, 0.5)
        elif action == 1:
            self.c1.set_control(-rotation, 0.5)
        elif action == 2:
            self.c1.set_control(0, acceleration)
        elif action == 3:
            self.c1.set_control(0, 0.5)

        # if action == 0:
        #     self.c1.set_control(rotation, 0.1)
        # elif action == 1:
        #     self.c1.set_control(rotation, 1)
        # elif action == 2:
        #     self.c1.set_control(rotation, -1)
        # elif action == 3:
        #     self.c1.set_control(-rotation, 0.1)
        # elif action == 4:
        #     self.c1.set_control(-rotation, 1)
        # elif action == 5:
        #     self.c1.set_control(-rotation, -1)
        # elif action == 6:
        #     self.c1.set_control(0, 0.1)
        # elif action == 7:
        #     self.c1.set_control(0, 1)
        # elif action == 8:
        #     self.c1.set_control(0, -1)

        self.w.tick()  # This ticks the world for one time step (dt second)

        # Update sensors

        self.s1.car = self.c1
        self.s1.p1 = Point(self.s4.car.edge_centers[0][0] * self.ppm,
                           self.s4.car.edge_centers[0][1] * self.ppm)
        self.s1.p2 = Point(
            self.s4.car.edge_centers[0][0] * self.ppm +
            self.ppm * self.range_sensors * np.cos(self.s4.car.heading),
            (self.ppm * self.s4.car.edge_centers[0][1]) +
            self.ppm * self.range_sensors * np.sin(self.s4.car.heading))
        self.s1.list_points = list(
            getEquidistantPoints(self.s1.p1, self.s1.p2, self.precision))

        # Second sensor
        self.s2.car = self.c1
        self.s2.p1 = Point(self.s2.car.corners[0].x * self.ppm,
                           self.s2.car.corners[0].y * self.ppm)
        self.s2.p2 = Point(
            self.s2.car.corners[0].x * self.ppm + self.ppm *
            self.range_sensors * np.cos(self.s2.car.heading + np.pi / 4),
            (self.ppm * self.s2.car.corners[0].y) + self.ppm *
            self.range_sensors * np.sin(self.s2.car.heading + np.pi / 4))
        self.s2.list_points = list(
            getEquidistantPoints(self.s2.p1, self.s2.p2, self.precision))
        # Third sensor
        self.s3.car = self.c1
        self.s3.p1 = Point(self.s3.car.corners[3].x * self.ppm,
                           self.s3.car.corners[3].y * self.ppm)
        self.s3.p2 = Point(
            self.s3.car.corners[3].x * self.ppm + self.ppm *
            self.range_sensors * np.cos(self.s1.car.heading - np.pi / 4),
            (self.ppm * self.s3.car.corners[3].y) + self.ppm *
            self.range_sensors * np.sin(self.s3.car.heading - np.pi / 4))
        self.s3.list_points = list(
            getEquidistantPoints(self.s3.p1, self.s3.p2, self.precision))
        # Fourth sensor
        self.s4.car = self.c1
        self.s4.p1 = Point(self.s4.car.edge_centers[1][0] * self.ppm,
                           self.s4.car.edge_centers[1][1] * self.ppm)
        self.s4.p2 = Point(
            self.s4.car.edge_centers[1][0] * self.ppm + self.ppm *
            self.range_sensors * np.cos(self.s4.car.heading + np.pi / 2),
            (self.ppm * self.s4.car.edge_centers[1][1]) + self.ppm *
            self.range_sensors * np.sin(self.s4.car.heading + np.pi / 2))
        self.s4.list_points = list(
            getEquidistantPoints(self.s4.p1, self.s4.p2, self.precision))
        # Fifth sensor
        self.s5.car = self.c1
        self.s5.p1 = Point(self.s5.car.edge_centers[3][0] * self.ppm,
                           self.s5.car.edge_centers[3][1] * self.ppm)
        self.s5.p2 = Point(
            self.s5.car.edge_centers[3][0] * self.ppm + self.ppm *
            self.range_sensors * np.cos(self.s5.car.heading - np.pi / 2),
            (self.ppm * self.s5.car.edge_centers[3][1]) + self.ppm *
            self.range_sensors * np.sin(self.s5.car.heading - np.pi / 2))
        self.s5.list_points = list(
            getEquidistantPoints(self.s5.p1, self.s5.p2, self.precision))
        # Sixth sensor
        self.s6.car = self.c1
        self.s6.p1 = Point(self.s6.car.edge_centers[0][0] * self.ppm,
                           self.s6.car.edge_centers[0][1] * self.ppm)
        self.s6.p2 = Point(
            self.s6.car.edge_centers[0][0] * self.ppm + self.ppm *
            self.range_sensors * np.cos(self.s6.car.heading + np.pi / 12),
            (self.ppm * self.s6.car.edge_centers[0][1]) + self.ppm *
            self.range_sensors * np.sin(self.s6.car.heading + np.pi / 12))
        self.s6.list_points = list(
            getEquidistantPoints(self.s6.p1, self.s6.p2, self.precision))
        # Seventh sensor
        self.s7.car = self.c1
        self.s7.p1 = Point(self.s7.car.edge_centers[0][0] * self.ppm,
                           self.s7.car.edge_centers[0][1] * self.ppm)
        self.s7.p2 = Point(
            self.s7.car.edge_centers[0][0] * self.ppm + self.ppm *
            self.range_sensors * np.cos(self.s7.car.heading + np.pi / 6),
            (self.ppm * self.s7.car.edge_centers[0][1]) + self.ppm *
            self.range_sensors * np.sin(self.s7.car.heading + np.pi / 6))
        self.s7.list_points = list(
            getEquidistantPoints(self.s7.p1, self.s7.p2, self.precision))
        # Eighth sensor
        self.s8.car = self.c1
        self.s8.p1 = Point(self.s8.car.edge_centers[0][0] * self.ppm,
                           self.s8.car.edge_centers[0][1] * self.ppm)
        self.s8.p2 = Point(
            self.s8.car.edge_centers[0][0] * self.ppm + self.ppm *
            self.range_sensors * np.cos(self.s8.car.heading - np.pi / 12),
            (self.ppm * self.s8.car.edge_centers[0][1]) + self.ppm *
            self.range_sensors * np.sin(self.s8.car.heading - np.pi / 12))
        self.s8.list_points = list(
            getEquidistantPoints(self.s8.p1, self.s8.p2, self.precision))
        # Ninth sensor
        self.s9.car = self.c1
        self.s9.p1 = Point(self.s9.car.edge_centers[0][0] * self.ppm,
                           self.s9.car.edge_centers[0][1] * self.ppm)
        self.s9.p2 = Point(
            self.s9.car.edge_centers[0][0] * self.ppm + self.ppm *
            self.range_sensors * np.cos(self.s9.car.heading - np.pi / 6),
            (self.ppm * self.s9.car.edge_centers[0][1]) + self.ppm *
            self.range_sensors * np.sin(self.s9.car.heading - np.pi / 6))
        self.s9.list_points = list(
            getEquidistantPoints(self.s9.p1, self.s9.p2, self.precision))

        # Update all sensors' lines
        for sensor in self.listSensors:
            sensor.obj = []
            for i in range(sensor.precision):
                sensor.obj.append(
                    Line(
                        Point(sensor.list_points[i][0],
                              sensor.list_points[i][1]),
                        Point(sensor.list_points[i + 1][0],
                              sensor.list_points[i + 1][1])))

        self.s1.collidable = False
        self.s2.collidable = False
        self.s3.collidable = False
        self.s4.collidable = False
        self.s5.collidable = False
        self.s6.collidable = False
        self.s7.collidable = False
        self.s8.collidable = False
        self.s9.collidable = False

        # Sensors detection parallelization
        # threading.Thread(target = self.sensor_detection_obstacle).start()
        # threading.Thread(target = self.sensor_detection_painting).start()
        self.sensor_detection_obstacle()
        self.sensor_detection_painting()

        self.car_in_checkpoint()

        # Update Text

        self.textTest.text = "Speed " + str(round(self.c1.speed, 3)) + "\n" \
        + "Travelled distance " + str(round(self.c1.distance_travelled, 3)) + "\n" \
        + "Reward " + str(round(self.reward, 3)) + "\n" \
        + "Distance Front " + str(self.s1.dist_obstacle) + "\n" \
        + "Distance Diag Left " + str(self.s2.dist_obstacle) + "\n" \
        + "Distance Diag Right " + str(self.s3.dist_obstacle) + "\n" \
        + "Distance Mid Left " + str(self.s4.dist_obstacle) + "\n" \
        + "Distance Mid Right " + str(self.s5.dist_obstacle) + "\n" \
        + "Distance Front Left " + str(self.s6.dist_obstacle) + "\n" \
        + "Distance Front Left 2 " + str(self.s7.dist_obstacle) + "\n" \
        + "Distance Front Right " + str(self.s8.dist_obstacle) + "\n" \
        + "Distance Front Right 2 " + str(self.s9.dist_obstacle)

        self.textTest.collidable = False

        # For evaluation
        self.c1.distance_travelled += self.c1.speed * dt

        self.w.render(self.window_created)

        # time.sleep(0.1) # Let's watch it 4x

        if self.w.collision_exists(
        ):  # We can check if there is any collision at all.
            pass
            # print('Collision exists somewhere...')

        if self.w.car_cross_line():
            pass
            # print("CAR CROSSES LINE")

        self.agent_in_range = []
        for agent in (self.w.static_agents + self.w.dynamic_agents):
            if not (isinstance(agent, TextAgent) or \
                isinstance(agent, CheckPointAgent) or \
                isinstance(agent, Sensors) or \
                isinstance(agent, RingBuilding) or \
                isinstance(agent, CircleBuilding) or \
                isinstance(agent, RectangleBuilding) or \
                # isinstance(agent, CheckPointAgent) or\
                (isinstance(agent, Car) and agent.name == "agent")):
                if self.c1.distanceTo(agent) < self.range_sensors + 1:
                    self.agent_in_range.append(agent)
예제 #13
0
    def __init__(self, window_created: bool, win: GraphWin):

        self.window_created = window_created
        self.win = win
        self.w = World(dt, width = world_width, height = world_height, win = self.win, ppm = 6) # The world is 120 meters by 120 meters. ppm is the pixels per meter.

        # To create a circular road, we will add a CircleBuilding and then a RingBuilding around it
        # self.cb = CircleBuilding(Point(world_width/2, world_height/2), inner_building_radius, 'gray80')
        # self.w.add(self.cb)
        # self.rb = RingBuilding(Point(world_width/2, world_height/2), inner_building_radius + num_lanes * lane_width + (num_lanes - 1) * lane_marker_width, 1+np.sqrt((world_width/2)**2 + (world_height/2)**2), 'gray80')
        # self.w.add(self.rb)


        # Intersection map
        self.w.add(Painting(Point(71.5, 106.5), Point(97, 27), 'gray80'))  # We build a sidewalk.
        self.w.add(RectangleBuilding(Point(72.5, 107.5), Point(95, 25)))  # The RectangleBuilding is then on top of the sidewalk, with some margin.

        # Let's repeat this for 4 different RectangleBuildings.
        self.w.add(Painting(Point(8.5, 106.5), Point(17, 27), 'gray80'))
        self.w.add(RectangleBuilding(Point(7.5, 107.5), Point(15, 25)))

        self.w.add(Painting(Point(8.5, 41), Point(17, 82), 'gray80'))
        self.w.add(RectangleBuilding(Point(7.5, 40), Point(15, 80)))

        self.w.add(Painting(Point(71.5, 41), Point(97, 82), 'gray80'))
        self.w.add(RectangleBuilding(Point(72.5, 40), Point(95, 80)))

        # Let's also add some zebra crossings, because why not.
        self.w.add(Painting(Point(18, 81), Point(0.5, 2), 'white'))
        self.w.add(Painting(Point(19, 81), Point(0.5, 2), 'white'))
        self.w.add(Painting(Point(20, 81), Point(0.5, 2), 'white'))
        self.w.add(Painting(Point(21, 81), Point(0.5, 2), 'white'))
        self.w.add(Painting(Point(22, 81), Point(0.5, 2), 'white'))

        # Let's also add some lane markers on the ground. This is just decorative. Because, why not.
        # for lane_no in range(num_lanes - 1):
        #     self.lane_markers_radius = inner_building_radius + (lane_no + 1) * lane_width + (lane_no + 0.5) * lane_marker_width
        #     self.lane_marker_height = np.sqrt(2*(self.lane_markers_radius**2)*(1-np.cos((2*np.pi)/(2*num_of_lane_markers)))) # approximate the circle with a polygon and then use cosine theorem
        #     for theta in np.arange(0, 2*np.pi, 2*np.pi / num_of_lane_markers):
        #         self.dx = self.lane_markers_radius * np.cos(theta)
        #         self.dy = self.lane_markers_radius * np.sin(theta)
        #         self.w.add(Painting(Point(world_width/2 + self.dx, world_height/2 + self.dy), Point(lane_marker_width, self.lane_marker_height), 'white', heading = theta))


        # Checkpoint
        self.checkpoint = CheckPointAgent(Point(78, 85), 3)
        self.w.add(self.checkpoint)

        # A Car object is a dynamic object -- it can move. We construct it using its center location and heading angle.
        self.c1 = Car(Point(20, 20), np.pi/2)
        self.c1.max_speed = 30.0  # let's say the maximum is 30 m/s (108 km/h)
        self.c1.velocity = Point(0, 3.0)
        self.w.add(self.c1)
        self.ppm = 6

        self.c2 = Car(Point(118, 90), np.pi, 'blue')
        self.c2.velocity = Point(3.0, 0)  # We can also specify an initial velocity just like this.
        self.w.add(self.c2)

        # Pedestrian is almost the same as Car. It is a "circle" object rather than a rectangle.
        self.p1 = Pedestrian(Point(28, 81), np.pi)
        self.p1.max_speed = 10.0  # We can specify min_speed and max_speed of a Pedestrian (and of a Car). This is 10 m/s, almost Usain Bolt.
        self.w.add(self.p1)

        
        # Sensors initialization
        self.range_sensors = 10 # 10 meters
        self.precision = 10 # sensors' resolution

        self.s1 = Sensors(
            Point(self.ppm*self.c1.center.x + self.c1.size.x/2 * np.cos(self.c1.heading) * self.ppm, self.ppm * world_height - self.ppm*self.c1.center.y - self.ppm * self.c1.size.x/2 * np.sin(self.c1.heading)), 
            Point(self.ppm*self.c1.center.x + self.c1.size.x/2 * np.cos(self.c1.heading) * self.ppm + self.ppm * self.range_sensors * np.cos(self.c1.heading), 
                (self.ppm*world_height - self.ppm*self.c1.center.y - self.ppm * self.c1.size.x/2 * np.sin(self.c1.heading)) - self.ppm * self.range_sensors * np.sin(self.c1.heading)), 
            self.range_sensors,
            "Front_Sensor",
            self.c1,
            self.precision)
        

        self.s2 = Sensors( 
            Point(self.c1.corners[0].x*self.ppm, self.ppm*world_height - self.c1.corners[0].y*self.ppm), 
            Point(self.c1.corners[0].x*self.ppm + self.ppm * self.range_sensors * np.cos(self.c1.heading + np.pi/4), 
                (self.ppm*world_height - self.ppm*self.c1.corners[0].y) - self.ppm * self.range_sensors * np.sin(self.c1.heading + np.pi/4)), 
            self.range_sensors,
            "Diag_Left_Sensor",
            self.c1,
            self.precision)

        self.s3 = Sensors(
            Point(self.c1.corners[3].x*self.ppm, self.ppm*world_height - self.c1.corners[3].y*self.ppm), 
            Point(self.c1.corners[3].x*self.ppm + self.ppm * self.range_sensors * np.cos(self.c1.heading - np.pi/4), 
                (self.ppm*world_height - self.ppm*self.c1.corners[3].y) - self.ppm * self.range_sensors * np.sin(self.c1.heading - np.pi/4)), 
            self.range_sensors,
            "Diag_Right_Sensor",
            self.c1,
            self.precision)

        self.s4 = Sensors(
            Point(self.c1.edge_centers[1][0]*self.ppm, self.ppm*world_height - self.c1.edge_centers[1][1]*self.ppm), 
            Point(self.c1.edge_centers[1][0]*self.ppm + self.ppm * self.range_sensors * np.cos(self.c1.heading + np.pi/2), 
                (self.ppm*world_height - self.ppm*self.c1.edge_centers[1][1]) - self.ppm * self.range_sensors * np.sin(self.c1.heading + np.pi/2)), 
            self.range_sensors,
            "Mid_Left_Sensor",
            self.c1,
            self.precision)

        self.s5 = Sensors(
            Point(self.c1.edge_centers[3][0]*self.ppm, self.ppm*world_height - self.c1.edge_centers[3][1]*self.ppm), 
            Point(self.c1.edge_centers[3][0]*self.ppm + self.ppm * self.range_sensors * np.cos(self.c1.heading - np.pi/2), 
                (self.ppm*world_height - self.ppm*self.c1.edge_centers[3][1]) - self.ppm * self.range_sensors * np.sin(self.c1.heading - np.pi/2)), 
            self.range_sensors,
            "Mid_Right_Sensor",
            self.c1,
            self.precision)

        # self.s3 = Sensors(
        #     Point(self.c1.corners[3].x*self.ppm, self.ppm*world_height - self.c1.corners[3].y*self.ppm), 
        #     Point(self.c1.corners[3].x*self.ppm + self.ppm * self.range_sensors * np.cos(self.c1.heading - np.pi/4), 
        #         (self.ppm*world_height - self.ppm*self.c1.corners[3].y) - self.ppm * self.range_sensors * np.sin(self.c1.heading - np.pi/4)), 
        #     self.range_sensors,
        #     "Mid_Right_Sensor",
        #     self.c1,
        #     self.precision)

        self.s1.collidable = False
        self.s2.collidable = False
        self.s3.collidable = False
        self.s4.collidable = False
        self.s5.collidable = False

        self.w.add(self.s1)
        self.w.add(self.s2)
        self.w.add(self.s3)
        self.w.add(self.s4)
        self.w.add(self.s5)

        self.listSensors = [self.s1, self.s2, self.s3, self.s4, self.s5]

        # Add Text

        self.textTest = TextAgent(Point(world_width, world_height), "Distance Front Sensor " + str(self.s1.dist_obstacle) + "\n" 
            + "Distance Diag Right Sensor " + str(self.s3.dist_obstacle) + "\n" 
            + "Distance Diag Left Sensor " + str(self.s2.dist_obstacle) + "\n"
            + "Distance Mid Left Sensor " + str(self.s4.dist_obstacle) + "\n"
            + "Distance Mid Right Sensor " + str(self.s5.dist_obstacle))
        self.textTest.collidable = False
        self.w.add(self.textTest)

        self.init_dist_to_cp = self.c1.distanceTo(self.checkpoint)
예제 #14
0
    def action(self, action):
        # if action == 0:
        #     self.c1.set_control(0.3, 0)
        # elif action == 1:
        #     self.c1.set_control(-0.3, 0)
        # elif action == 2:
        #     self.c1.set_control(0, 1)
        # elif action == 3:
        #     self.c1.set_control(0, -1)

        rotation = 0.15

        if action == 0:
            self.c1.set_control(rotation, 0.1)
        elif action == 1:
            self.c1.set_control(rotation, 1)
        elif action == 2:
            self.c1.set_control(rotation, -1)
        elif action == 3:
            self.c1.set_control(-rotation, 0.1)
        elif action == 4:
            self.c1.set_control(-rotation, 1)
        elif action == 5:
            self.c1.set_control(-rotation, -1)
        elif action == 6:
            self.c1.set_control(0, 0.1)
        elif action == 7:
            self.c1.set_control(0, 1)
        elif action == 8:
            self.c1.set_control(0, -1)



        self.w.tick() # This ticks the world for one time step (dt second)

        # Update sensors
        # First sensor
        self.s1.car = self.c1
        self.s1.p1 = Point(self.ppm*self.s1.car.center.x + self.s1.car.size.x/2 * np.cos(self.s1.car.heading) * self.ppm, self.ppm * world_height - self.ppm*self.s1.car.center.y - self.ppm * self.s1.car.size.x/2 * np.sin(self.s1.car.heading))
        self.s1.p2 = Point(self.ppm*self.s1.car.center.x + self.s1.car.size.x/2 * np.cos(self.s1.car.heading) * self.ppm + self.ppm * self.range_sensors * np.cos(self.s1.car.heading), 
                (self.ppm*world_height - self.ppm*self.s1.car.center.y - self.ppm * self.s1.car.size.x/2 * np.sin(self.s1.car.heading)) - self.ppm * self.range_sensors * np.sin(self.s1.car.heading))
        self.s1.list_points = list(getEquidistantPoints(self.s1.p1, self.s1.p2, self.precision))

         # Second sensor
        self.s2.car = self.c1
        self.s2.p1 = Point(self.s2.car.corners[0].x*self.ppm, self.ppm*world_height - self.s2.car.corners[0].y*self.ppm)
        self.s2.p2 = Point(self.s2.car.corners[0].x*self.ppm + self.ppm * self.range_sensors * np.cos(self.s2.car.heading + np.pi/4), 
            (self.ppm*world_height - self.ppm*self.s2.car.corners[0].y) - self.ppm * self.range_sensors * np.sin(self.s2.car.heading + np.pi/4))
        self.s2.list_points = list(getEquidistantPoints(self.s2.p1, self.s2.p2, self.precision))
        # Third sensor
        self.s3.car = self.c1
        self.s3.p1 = Point(self.s3.car.corners[3].x*self.ppm, self.ppm*world_height - self.s3.car.corners[3].y*self.ppm)
        self.s3.p2 = Point(self.s3.car.corners[3].x*self.ppm + self.ppm * self.range_sensors * np.cos(self.s1.car.heading - np.pi/4), 
            (self.ppm*world_height - self.ppm*self.s3.car.corners[3].y) - self.ppm * self.range_sensors * np.sin(self.s3.car.heading - np.pi/4))
        self.s3.list_points = list(getEquidistantPoints(self.s3.p1, self.s3.p2, self.precision))
        # Fourth sensor
        self.s4.car = self.c1
        self.s4.p1 = Point(self.s4.car.edge_centers[1][0]*self.ppm, self.ppm*world_height - self.s4.car.edge_centers[1][1]*self.ppm)
        self.s4.p2 = Point(self.s4.car.edge_centers[1][0]*self.ppm + self.ppm * self.range_sensors * np.cos(self.s4.car.heading + np.pi/2), 
            (self.ppm*world_height - self.ppm*self.s4.car.edge_centers[1][1]) - self.ppm * self.range_sensors * np.sin(self.s4.car.heading + np.pi/2))
        self.s4.list_points = list(getEquidistantPoints(self.s4.p1, self.s4.p2, self.precision))
         # Fifth sensor
        self.s5.car = self.c1
        self.s5.p1 = Point(self.s5.car.edge_centers[3][0]*self.ppm, self.ppm*world_height - self.s5.car.edge_centers[3][1]*self.ppm)
        self.s5.p2 = Point(self.s5.car.edge_centers[3][0]*self.ppm + self.ppm * self.range_sensors * np.cos(self.s5.car.heading - np.pi/2), 
            (self.ppm*world_height - self.ppm*self.s5.car.edge_centers[3][1]) - self.ppm * self.range_sensors * np.sin(self.s5.car.heading - np.pi/2))
        self.s5.list_points = list(getEquidistantPoints(self.s5.p1, self.s5.p2, self.precision))

        # Update all sensors' lines
        for sensor in self.listSensors:
            sensor.obj = []
            for i in range(sensor.range_sensors):
                sensor.obj.append(Line(Point(sensor.list_points[i][0], sensor.list_points[i][1]), Point(sensor.list_points[i+1][0], sensor.list_points[i+1][1])))

        self.s1.collidable = False
        self.s2.collidable = False
        self.s3.collidable = False
        self.s4.collidable = False
        self.s5.collidable = False
        
        # Sensors detection parallelization
        threading.Thread(target = self.sensor_detection_obstacle).start()
        threading.Thread(target = self.sensor_detection_painting).start()


        # Update Text

        self.textTest.text = "Distance Front Sensor " + str(self.s1.dist_obstacle) + "\n" \
        + "Distance Diag Right Sensor " + str(self.s3.dist_obstacle) + "\n" \
        + "Distance Diag Left Sensor " + str(self.s2.dist_obstacle) + "\n" \
        + "Distance Mid Left Sensor " + str(self.s4.dist_obstacle) + "\n" \
        + "Distance Mid Right Sensor " + str(self.s5.dist_obstacle) + "\n" \
         "\n Speed " + str(round(self.c1.speed, 3))

        self.textTest.collidable = False   

        self.w.render(self.window_created)

        # time.sleep(dt/4) # Let's watch it 4x



        if self.w.collision_exists(): # We can check if there is any collision at all.
            pass
            # print('Collision exists somewhere...')

        if self.w.car_cross_line():
            pass
예제 #15
0
class Entity:
    def __init__(self,
                 center: Point,
                 heading: float,
                 movable: bool = True,
                 friction: float = 0):
        self.center = center  # this is x, y
        self.heading = heading
        self.movable = movable
        self.color = 'ghost white'
        self.collidable = True
        if movable:
            self.friction = friction
            self.velocity = Point(0, 0)  # this is xp, yp
            self.acceleration = 0  # this is vp (or speedp)
            self.angular_velocity = 0  # this is headingp
            self.inputSteering = 0
            self.inputAcceleration = 0
            self.max_speed = np.inf
            self.min_speed = 0

    @property
    def speed(self) -> float:
        return self.velocity.norm(p=2) if self.movable else 0

    def set_control(self, inputSteering: float, inputAcceleration: float):
        self.inputSteering = inputSteering
        self.inputAcceleration = inputAcceleration

    @property
    def rear_dist(
        self
    ) -> float:  # distance between the rear wheels and the center of mass. This is needed to implement the kinematic bicycle model dynamics
        if isinstance(self, RectangleEntity):
            # only for this function, we assume
            # (i) the longer side of the rectangle is always the nominal direction of the car
            # (ii) the center of mass is the same as the geometric center of the RectangleEntity.
            return np.maximum(self.size.x, self.size.y) / 2.
        elif isinstance(self, CircleEntity):
            return self.radius
        elif isinstance(self, RingEntity):
            return (self.inner_radius + self.outer_radius) / 2.
        raise NotImplementedError

    def tick(self, dt: float):
        if self.movable and self.inertia:  # cars and pedestrians
            speed = self.speed
            heading = self.heading

            # Kinematic bicycle model dynamics based on
            # "Kinematic and Dynamic Vehicle Models for Autonomous Driving Control Design" by
            # Jason Kong, Mark Pfeiffer, Georg Schildbach, Francesco Borrelli
            lr = self.rear_dist
            lf = lr  # we assume the center of mass is the same as the geometric center of the entity
            beta = np.arctan(lr / (lf + lr) * np.tan(self.inputSteering))

            new_angular_velocity = speed * self.inputSteering  # this is not needed and used for this model, but let's keep it for consistency (and to avoid if-else statements)
            new_acceleration = self.inputAcceleration - self.friction
            new_speed = np.clip(speed + new_acceleration * dt, self.min_speed,
                                self.max_speed)
            new_heading = heading + (
                (speed + new_speed) / lr) * np.sin(beta) * dt / 2.
            angle = (heading + new_heading) / 2. + beta
            new_center = self.center + (speed + new_speed) * Point(
                np.cos(angle), np.sin(angle)) * dt / 2.
            new_velocity = Point(new_speed * np.cos(new_heading),
                                 new_speed * np.sin(new_heading))
            '''
            # Point-mass dynamics based on
            # "Active Preference-Based Learning of Reward Functions" by
            # Dorsa Sadigh, Anca D. Dragan, S. Shankar Sastry, Sanjit A. Seshia
            
            new_angular_velocity = speed * self.inputSteering
            new_acceleration = self.inputAcceleration - self.friction * speed
            
            new_heading = heading + (self.angular_velocity + new_angular_velocity) * dt / 2.
            new_speed = np.clip(speed + (self.acceleration + new_acceleration) * dt / 2., self.min_speed, self.max_speed)
            
            new_velocity = Point(((speed + new_speed) / 2.) * np.cos((new_heading + heading) / 2.),
                                    ((speed + new_speed) / 2.) * np.sin((new_heading + heading) / 2.))
            
            new_center = self.center + (self.velocity + new_velocity) * dt / 2.
            
            '''

            self.center = new_center
            self.heading = np.mod(
                new_heading,
                2 * np.pi)  # wrap the heading angle between 0 and +2pi
            self.velocity = new_velocity
            self.acceleration = new_acceleration
            self.angular_velocity = new_angular_velocity

            self.buildGeometry()

    def buildGeometry(self):  # builds the obj
        raise NotImplementedError

    def collidesWith(self, other: Union['Point', 'Entity', 'Sensors']) -> bool:
        if isinstance(other, Entity):
            return self.obj.intersectsWith(other.obj)
        elif isinstance(other, Point):
            return self.obj.intersectsWith(other)
        raise NotImplementedError

    def distanceTo(self, other: Union['Point', 'Entity']) -> float:
        if isinstance(other, Entity):
            return self.obj.distanceTo(other.obj)
        elif isinstance(other, Point):
            return self.obj.distanceTo(other)
        raise NotImplementedError

    def copy(self):
        return copy.deepcopy(self)

    @property
    def x(self):
        return self.center.x

    @property
    def y(self):
        return self.center.y

    @property
    def xp(self):
        return self.velocity.x

    @property
    def yp(self):
        return self.velocity.y