def make_agents(env): load_path = "zoo/ppo_masking/final_model" model = PPO.load(load_path, env) random1 = RandomAgent(env) random2 = RandomAgent(env) random3 = RandomAgent(env) return [model, random1, random2, random3]
def train(load_path): env = LoveLetterMultiAgentEnv(num_players=4) env.seed(SEED) # take mujoco hyperparams (but doubled timesteps_per_actorbatch to cover more steps.) # model = PPO(MlpPolicy, env, timesteps_per_actorbatch=4096, clip_param=0.2, entcoeff=0.0, optim_epochs=10, # optim_stepsize=3e-4, optim_batchsize=64, gamma=0.99, lam=0.95, schedule='linear', verbose=2) if load_path: model = PPO.load(load_path, env) else: model = PPO(MlpPolicy, env) random_agents = [RandomAgent(env, SEED + i) for i in range(3)] agents = [model, *random_agents] env.set_agents(agents) eval_callback = EvalCallback(env, best_model_save_path=LOGDIR, log_path=LOGDIR, eval_freq=EVAL_FREQ, n_eval_episodes=EVAL_EPISODES) model.learn(total_timesteps=NUM_TIMESTEPS, callback=eval_callback) model.save(os.path.join( LOGDIR, "final_model")) # probably never get to this point. env.close()
def make_agents(env): human = HumanAgent() # load_path = "zoo/ppo_reward_bugfix4/latest/best_model" # load_path = "zoo/ppo_logging/2020-12-27T15:51:49/final_model" # load_path = "zoo/ppo_kl/2020-12-27T16:28:42/final_model" # model = PPO.load(load_path, env) random1 = RandomAgent(env) # random2 = RandomAgent(env) return [human, random1] # model] # random1, random2]
def make_agents(env): # load_path = "zoo/ppo_masking/final_model" # load_path = "zoo/ppo_logging/2020-12-27T15:51:49/final_model" load_path = "zoo/ppo_kl/2020-12-27T16:28:42/final_model" model = PPO.load(load_path, env) random1 = RandomAgent(env) # random2 = RandomAgent(env) # random3 = RandomAgent(env) return [model, random1] #, random2, random3]
def train(output_folder, load_path): base_output = Path(output_folder) full_output = base_output / datetime.datetime.now().isoformat( timespec="seconds") # latest = base_output / "latest" # latest.symlink_to(full_output) logger.configure(folder=str(full_output)) env = LoveLetterMultiAgentEnv(num_players=4, reward_fn=Rewards.fast_elimination_reward) env.seed(SEED) # take mujoco hyperparams (but doubled timesteps_per_actorbatch to cover more steps.) # model = PPO(MlpPolicy, env, timesteps_per_actorbatch=4096, clip_param=0.2, entcoeff=0.0, optim_epochs=10, # optim_stepsize=3e-4, optim_batchsize=64, gamma=0.99, lam=0.95, schedule='linear', verbose=2) if load_path: model = PPO.load(load_path, env) else: # def test_fn(env): # return env.valid_action_mask() # model = PPO(MlpPolicy, env, verbose=1, ent_coef=0.05) #, action_mask_fn=test_fn) other_agents = [RandomAgent(env, SEED + i) for i in range(3)] # other_agents = [ # PPO.load("zoo/ppo_logging/2020-12-27T15:51:49/final_model", env), # ] # PPO.load("zoo/ppo_reward_bugfix2/latest/best_model", env), # PPO.load("zoo/ppo_reward_bugfix2/latest/best_model", env), # ] agents = [model, *other_agents] env.set_agents(agents) eval_callback = EvalCallback( env, best_model_save_path=str(full_output), log_path=str(full_output), eval_freq=EVAL_FREQ, n_eval_episodes=EVAL_EPISODES, ) model.learn(total_timesteps=NUM_TIMESTEPS, callback=eval_callback) model.save(str(full_output / "final_model")) env.close()