예제 #1
0
    def __init__(self, transaction_fee=LIMIT_ORDER_FEE, **kwargs):
        """
        Environment designed for automated market making.
        :param kwargs: refer to BaseEnvironment.py
        """
        super(MarketMaker, self).__init__(**kwargs)

        # environment attributes to override in sub-class
        self.actions = np.eye(17, dtype=np.float32)

        # get Broker class to keep track of PnL and orders
        self.broker = Broker(max_position=self.max_position,
                             transaction_fee=transaction_fee)

        self.action_space = spaces.Discrete(len(self.actions))
        self.reset()  # reset to load observation.shape
        self.observation_space = spaces.Box(low=-10,
                                            high=10,
                                            shape=self.observation.shape,
                                            dtype=np.float32)

        print(
            '{} MarketMaker #{} instantiated\nobservation_space: {}'.format(
                self.sym, self._seed, self.observation_space.shape),
            'reward_type = {}'.format(self.reward_type))
예제 #2
0
    def test_case_two(self):
        print('\nTest_Case_Two')

        test_position = Broker()
        midpoint = 100.
        fee = .003

        order_open = MarketOrder(ccy='BTC-USD',
                                 side='short',
                                 price=midpoint,
                                 step=1)
        test_position.add(order=order_open)
        self.assertEqual(1, test_position.short_inventory.position_count)
        self.assertEqual(0, test_position.long_inventory.position_count)
        self.assertEqual(
            0.,
            test_position.long_inventory.get_unrealized_pnl(price=midpoint))
        print('SHORT Unrealized_pnl: %f' %
              test_position.short_inventory.get_unrealized_pnl(price=midpoint))

        order_close = MarketOrder(ccy='BTC-USD',
                                  side='short',
                                  price=midpoint - (midpoint * fee * 15),
                                  step=100)
        test_position.remove(order=order_close)
        self.assertEqual(0, test_position.short_inventory.position_count)
        self.assertEqual(0, test_position.long_inventory.position_count)
        self.assertEqual(
            0.,
            test_position.long_inventory.get_unrealized_pnl(price=midpoint))
        print('SHORT Unrealized_pnl: %f' %
              test_position.short_inventory.get_unrealized_pnl(price=midpoint))
        print('SHORT Realized_pnl: %f' % test_position.realized_pnl)
예제 #3
0
    def test_case_three(self):
        print('\nTest_Case_Three')

        test_position = Broker(5)
        midpoint = 100.

        for i in range(10):
            order_open = MarketOrder(ccy='BTC-USD',
                                     side='long',
                                     price=midpoint - i,
                                     step=i)
            test_position.add(order=order_open)

        self.assertEqual(5, test_position.long_inventory.position_count)
        self.assertEqual(0, test_position.short_inventory.position_count)
        print('Confirm we have 5 positions: %i' %
              test_position.long_inventory.position_count)

        for i in range(10):
            order_open = MarketOrder(ccy='BTC-USD',
                                     side='long',
                                     price=midpoint + i,
                                     step=i)
            test_position.remove(order=order_open)

        self.assertEqual(0, test_position.long_inventory.position_count)
        self.assertEqual(0, test_position.short_inventory.position_count)
예제 #4
0
    def test_case_one(self):
        print('\nTest_Case_One')

        test_position = Broker()
        midpoint = 100.
        fee = .003

        order_open = Order(ccy='BTC-USD', side='long', price=midpoint, step=1)
        test_position.add(order=order_open)

        self.assertEqual(1, test_position.long_inventory.position_count)
        print('LONG Unrealized_pnl: %f' %
              test_position.long_inventory.get_unrealized_pnl())

        self.assertEqual(0, test_position.short_inventory.position_count)
        self.assertEqual(0.,
                         test_position.short_inventory.get_unrealized_pnl())

        order_close = Order(ccy='BTC-USD',
                            side='long',
                            price=midpoint + (midpoint * fee * 5),
                            step=100)

        test_position.remove(order=order_close)
        self.assertEqual(0, test_position.long_inventory.position_count)
        print('LONG Unrealized_pnl: %f' %
              test_position.long_inventory.get_unrealized_pnl())

        self.assertEqual(test_position.short_inventory.position_count, 0)
        self.assertEqual(test_position.short_inventory.get_unrealized_pnl(),
                         0.)
        print('LONG Realized_pnl: %f' % test_position.get_realized_pnl())
예제 #5
0
    def test_long_pnl(self):
        test_position = Broker()
        step = 0
        bid_price = 101.
        ask_price = 102.
        buy_volume = 100
        sell_volume = 100
        pnl = 0.

        def walk_forward(pnl, step, bid_price, ask_price, buy_volume, sell_volume,
                         down=True):
            for i in range(50):
                step += 1
                if down:
                    bid_price *= 0.99
                    ask_price *= 0.99
                else:
                    bid_price *= 1.01
                    ask_price *= 1.01

                pnl, is_long_order_filled, is_short_order_filled = \
                    test_position.step_limit_order_pnl(
                    bid_price=bid_price, ask_price=ask_price, buy_volume=buy_volume,
                    sell_volume=sell_volume, step=step)
                pnl += pnl
                if i % 10 == 0:
                    print('bid_price={:.2f} | ask_price={:.2f}'.format(bid_price,
                                                                       ask_price))
            return step, bid_price, ask_price, buy_volume, sell_volume, pnl

        test_position.add(
            order=LimitOrder(ccy='BTC-USD', side='long', price=100., step=step,
                             queue_ahead=1000))

        step, _, _, buy_volume, sell_volume, pnl = walk_forward(pnl, step, bid_price,
                                                                ask_price, buy_volume,
                                                                sell_volume, down=True)
        self.assertEqual(1, test_position.long_inventory_count)

        test_position.add(
            order=LimitOrder(ccy='BTC-USD', side='short', price=105., step=step,
                             queue_ahead=0))
        _, _, _, _, _, pnl = walk_forward(pnl, step, bid_price, ask_price, buy_volume,
                                          sell_volume, down=False)
        realized_pnl = test_position.realized_pnl

        self.assertEqual(0.05, realized_pnl,
                         "Expected Realized PnL of 0.5 and got {}".format(realized_pnl))
        self.assertEqual(0,
                         test_position.short_inventory_count +
                         test_position.long_inventory_count)
        print("PnL: {}".format(pnl))
예제 #6
0
    def test_avg_exe(self):
        test_position = Broker()

        # perform a partial fill on the first order
        step = 0
        bid_price = 101.
        ask_price = 102.
        buy_volume = 500
        sell_volume = 500
        pnl = 0.

        test_position.add(order=LimitOrder(ccy='BTC-USD',
                                           side='long',
                                           price=bid_price,
                                           step=step,
                                           queue_ahead=0))

        print("taking first step...")
        step += 1
        pnl += test_position.step_limit_order_pnl(bid_price=bid_price,
                                                  ask_price=ask_price,
                                                  buy_volume=buy_volume,
                                                  sell_volume=sell_volume,
                                                  step=step)
        self.assertEqual(500, test_position.long_inventory.order.executed)
        self.assertEqual(0, test_position.long_inventory_count)

        # if order gets filled with a bid below the order's price, the order should NOT
        # receive any price improvement during the execution.
        bid_price = 99.
        ask_price = 100.
        test_position.add(order=LimitOrder(ccy='BTC-USD',
                                           side='long',
                                           price=bid_price,
                                           step=step,
                                           queue_ahead=0))

        print("taking second step...")
        step += 1
        pnl += test_position.step_limit_order_pnl(bid_price=bid_price,
                                                  ask_price=ask_price,
                                                  buy_volume=buy_volume,
                                                  sell_volume=sell_volume,
                                                  step=step)
        self.assertEqual(1, test_position.long_inventory_count)
        self.assertEqual(100., test_position.long_inventory.average_price)
        print("PnL: {}".format(pnl))
예제 #7
0
    def __init__(self,
                 *,
                 fitting_file='LTC-USD_2019-04-07.csv.xz',
                 testing_file='LTC-USD_2019-04-08.csv.xz',
                 step_size=1,
                 max_position=5,
                 window_size=10,
                 seed=1,
                 action_repeats=10,
                 training=True,
                 format_3d=False,
                 z_score=True,
                 reward_type='trade_completion',
                 scale_rewards=True):
        super(PriceJump, self).__init__(fitting_file=fitting_file,
                                        testing_file=testing_file,
                                        step_size=step_size,
                                        max_position=max_position,
                                        window_size=window_size,
                                        seed=seed,
                                        action_repeats=action_repeats,
                                        training=training,
                                        format_3d=format_3d,
                                        z_score=z_score,
                                        reward_type=reward_type,
                                        scale_rewards=scale_rewards)

        self.actions = np.eye(3, dtype=np.float32)

        # get Broker class to keep track of PnL and orders
        self.broker = Broker(max_position=max_position,
                             transaction_fee=MARKET_ORDER_FEE)

        self.action_space = spaces.Discrete(len(self.actions))
        self.reset()  # reset to load observation.shape
        self.observation_space = spaces.Box(low=-10,
                                            high=10,
                                            shape=self.observation.shape,
                                            dtype=np.float32)

        print(
            '{} PriceJump #{} instantiated.\nself.observation_space.shape : {}'
            .format(self.sym, self._seed, self.observation_space.shape))
예제 #8
0
    def __init__(self,
                 symbol: str,
                 fitting_file: str,
                 testing_file: str,
                 max_position: int = 10,
                 window_size: int = 100,
                 seed: int = 1,
                 action_repeats: int = 5,
                 training: bool = True,
                 format_3d: bool = False,
                 reward_type: str = 'default',
                 transaction_fee: bool = True,
                 ema_alpha: list or float or None = EMA_ALPHA):
        """
        Base class for creating environments extending OpenAI's GYM framework.

        :param symbol: currency pair to trade / experiment
        :param fitting_file: prior trading day (e.g., T-1)
        :param testing_file: current trading day (e.g., T)
        :param max_position: maximum number of positions able to hold in inventory
        :param window_size: number of lags to include in observation space
        :param seed: random seed number
        :param action_repeats: number of steps to take in environment after a given action
        :param training: if TRUE, then randomize starting point in environment
        :param format_3d: if TRUE, reshape observation space from matrix to tensor
        :param reward_type: method for calculating the environment's reward:
            1) 'default' --> inventory count * change in midpoint price returns
            2) 'default_with_fills' --> inventory count * change in midpoint price returns
                + closed trade PnL
            3) 'realized_pnl' --> change in realized pnl between time steps
            4) 'differential_sharpe_ratio' -->
        http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.7210&rep=rep1&type=pdf
            5) 'asymmetrical' --> extended version of *default* and enhanced with a
                    reward for being filled above or below midpoint, and returns only
                    negative rewards for Unrealized PnL to discourage long-term
                    speculation.
            6) 'trade_completion' --> reward is generated per trade's round trip

        :param ema_alpha: decay factor for EMA, usually between 0.9 and 0.9999; if NONE,
            raw values are returned in place of smoothed values
        """
        assert reward_type in VALID_REWARD_TYPES, \
            'Error: {} is not a valid reward type. Value must be in:\n{}'.format(
                reward_type, VALID_REWARD_TYPES)

        self.viz = Visualize(
            columns=['midpoint', 'buys', 'sells', 'inventory', 'realized_pnl'],
            store_historical_observations=True)

        # get Broker class to keep track of PnL and orders
        self.broker = Broker(max_position=max_position,
                             transaction_fee=transaction_fee)

        # properties required for instantiation
        self.symbol = symbol
        self.action_repeats = action_repeats
        self._seed = seed
        self._random_state = np.random.RandomState(seed=self._seed)
        self.training = training
        self.max_position = max_position
        self.window_size = window_size
        self.reward_type = reward_type
        self.format_3d = format_3d  # e.g., [window, features, *NEW_AXIS*]
        self.testing_file = testing_file

        # properties that get reset()
        self.reward = np.array([0.0], dtype=np.float32)
        self.step_reward = np.array([0.0], dtype=np.float32)
        self.done = False
        self.local_step_number = 0
        self.midpoint = 0.0
        self.observation = None
        self.action = 0
        self.last_pnl = 0.
        self.last_midpoint = None
        self.midpoint_change = None
        self.A_t, self.B_t = 0., 0.  # variables for Differential Sharpe Ratio
        self.episode_stats = ExperimentStatistics()
        self.best_bid = self.best_ask = None

        # properties to override in sub-classes
        self.actions = None
        self.action_space = None
        self.observation_space = None

        # get historical data for simulations
        self.data_pipeline = DataPipeline(alpha=ema_alpha)

        # three different data sets, for different purposes:
        #   1) midpoint_prices - midpoint prices that have not been transformed
        #   2) raw_data - raw limit order book data, not including imbalances
        #   3) normalized_data - z-scored limit order book and order flow imbalance
        #       data, also midpoint price feature is replace by midpoint log price change
        self._midpoint_prices, self._raw_data, self._normalized_data = \
            self.data_pipeline.load_environment_data(
                fitting_file=fitting_file,
                testing_file=testing_file,
                include_imbalances=True,
                as_pandas=True,
            )
        # derive best bid and offer
        self._best_bids = self._raw_data['midpoint'] - (
            self._raw_data['spread'] / 2)
        self._best_asks = self._raw_data['midpoint'] + (
            self._raw_data['spread'] / 2)

        self.max_steps = self._raw_data.shape[0] - self.action_repeats - 1

        # load indicators into the indicator manager
        self.tns = IndicatorManager()
        self.rsi = IndicatorManager()
        for window in INDICATOR_WINDOW:
            self.tns.add(
                ('tns_{}'.format(window), TnS(window=window, alpha=ema_alpha)))
            self.rsi.add(
                ('rsi_{}'.format(window), RSI(window=window, alpha=ema_alpha)))

        # buffer for appending lags
        self.data_buffer = deque(maxlen=self.window_size)

        # Index of specific data points used to generate the observation space
        features = self._raw_data.columns.tolist()
        self.best_bid_index = features.index('bids_distance_0')
        self.best_ask_index = features.index('asks_distance_0')
        self.notional_bid_index = features.index('bids_notional_0')
        self.notional_ask_index = features.index('asks_notional_0')
        self.buy_trade_index = features.index('buys')
        self.sell_trade_index = features.index('sells')

        # typecast all data sets to numpy
        self._raw_data = self._raw_data.to_numpy(dtype=np.float32)
        self._normalized_data = self._normalized_data.to_numpy(
            dtype=np.float32)
        self._midpoint_prices = self._midpoint_prices.to_numpy(
            dtype=np.float64)
        self._best_bids = self._best_bids.to_numpy(dtype=np.float32)
        self._best_asks = self._best_asks.to_numpy(dtype=np.float32)

        # rendering class
        self._render = TradingGraph(sym=self.symbol)

        # graph midpoint prices
        self._render.reset_render_data(
            y_vec=self._midpoint_prices[:np.shape(self._render.x_vec)[0]])
예제 #9
0
    def test_queues_ahead_features(self):
        test_position = Broker()

        # perform a partial fill on the first order
        step = 0
        bid_price = 100.
        ask_price = 200.
        buy_volume = 0
        sell_volume = 0

        order_open_long = LimitOrder(ccy='BTC-USD',
                                     side='long',
                                     price=bid_price,
                                     step=step,
                                     queue_ahead=0)
        order_open_short = LimitOrder(ccy='BTC-USD',
                                      side='short',
                                      price=ask_price,
                                      step=step,
                                      queue_ahead=2000)
        print('opening long position = {}'.format(order_open_long))
        test_position.add(order=order_open_long)
        print('opening short position = {}'.format(order_open_short))
        test_position.add(order=order_open_short)

        print('\ntaking first step...')
        step += 1
        pnl, is_long_order_filled, is_short_order_filled = \
            test_position.step_limit_order_pnl(
                bid_price=bid_price, ask_price=ask_price, buy_volume=buy_volume,
                sell_volume=sell_volume, step=step)
        pnl += pnl

        print("#1 long_inventory.order = \n{}".format(
            test_position.long_inventory.order))
        print("#1 short_inventory.order = \n{}".format(
            test_position.short_inventory.order))
        bid_queue, ask_queue = test_position.get_queues_ahead_features()
        print("#1 get_queues_ahead_features:\nbid_queue={} || ask_queue={}".
              format(bid_queue, ask_queue))
        self.assertEqual(0., bid_queue)
        self.assertEqual(-0.67, round(ask_queue, 2))

        print('\ntaking second step...')
        buy_volume = 500
        sell_volume = 500
        step += 1
        pnl, is_long_order_filled, is_short_order_filled = \
            test_position.step_limit_order_pnl(
                bid_price=bid_price, ask_price=ask_price, buy_volume=buy_volume,
                sell_volume=sell_volume, step=step)
        pnl += pnl

        print("#2 long_inventory.order = \n{}".format(
            test_position.long_inventory.order))
        print("#2 short_inventory.order = \n{}".format(
            test_position.short_inventory.order))
        bid_queue, ask_queue = test_position.get_queues_ahead_features()
        print("#2 get_queues_ahead_features:\nbid_queue={} || ask_queue={}".
              format(bid_queue, ask_queue))
        self.assertEqual(0.5, bid_queue)
        self.assertEqual(-0.6, round(ask_queue, 2))

        print('\ntaking third step...')
        buy_volume = 500
        sell_volume = 499
        step += 1
        pnl, is_long_order_filled, is_short_order_filled = \
            test_position.step_limit_order_pnl(
                bid_price=bid_price, ask_price=ask_price, buy_volume=buy_volume,
                sell_volume=sell_volume, step=step)
        pnl += pnl

        print("#3 long_inventory.order = \n{}".format(
            test_position.long_inventory.order))
        print("#3 short_inventory.order = \n{}".format(
            test_position.short_inventory.order))
        bid_queue, ask_queue = test_position.get_queues_ahead_features()
        print("#3 get_queues_ahead_features:\nbid_queue={} || ask_queue={}".
              format(bid_queue, ask_queue))
        self.assertEqual(0.999, bid_queue)
        self.assertEqual(-0.5, round(ask_queue, 2))

        print('\ntaking fourth step...')
        buy_volume = 500
        sell_volume = 500
        step += 1
        pnl, is_long_order_filled, is_short_order_filled = \
            test_position.step_limit_order_pnl(
                bid_price=bid_price, ask_price=ask_price, buy_volume=buy_volume,
                sell_volume=sell_volume, step=step)
        pnl += pnl

        print("#4 long_inventory.order = \n{}".format(
            test_position.long_inventory.order))
        print("#4 short_inventory.order = \n{}".format(
            test_position.short_inventory.order))
        bid_queue, ask_queue = test_position.get_queues_ahead_features()
        print("#4 get_queues_ahead_features:\nbid_queue={} || ask_queue={}".
              format(bid_queue, ask_queue))
        self.assertEqual(0.0, bid_queue)
        self.assertEqual(-0.33, round(ask_queue, 2))
        print("PnL: {}".format(pnl))
예제 #10
0
    def test_lob_queuing(self):
        test_position = Broker()

        # perform a partial fill on the first order
        step = 0
        bid_price = 102.
        ask_price = 103.
        buy_volume = 500
        sell_volume = 500
        queue_ahead = 800

        order_open = LimitOrder(ccy='BTC-USD',
                                side='long',
                                price=bid_price,
                                step=step,
                                queue_ahead=queue_ahead)
        test_position.add(order=order_open)

        step += 1
        pnl, is_long_order_filled, is_short_order_filled = \
            test_position.step_limit_order_pnl(
                bid_price=bid_price, ask_price=ask_price, buy_volume=buy_volume,
                sell_volume=sell_volume, step=step)
        pnl += pnl

        print("#1 long_inventory.order = \n{}".format(
            test_position.long_inventory.order))
        self.assertEqual(300, test_position.long_inventory.order.queue_ahead)
        self.assertEqual(0, test_position.long_inventory.order.executed)
        self.assertEqual(0, test_position.long_inventory_count)

        step += 1
        pnl, is_long_order_filled, is_short_order_filled = \
            test_position.step_limit_order_pnl(
                bid_price=bid_price, ask_price=ask_price, buy_volume=buy_volume,
                sell_volume=sell_volume, step=step)
        pnl += pnl

        print("#2 long_inventory.order = \n{}".format(
            test_position.long_inventory.order))
        self.assertEqual(200, test_position.long_inventory.order.executed)
        self.assertEqual(0, test_position.long_inventory_count)

        # if order gets filled with a bid below the order's price, the order should NOT
        # receive any price improvement during the execution.
        bid_price = 100.
        ask_price = 102.
        order_open = LimitOrder(ccy='BTC-USD',
                                side='long',
                                price=bid_price,
                                step=step,
                                queue_ahead=queue_ahead)
        test_position.add(order=order_open)
        print("#3 long_inventory.order = \n{}".format(
            test_position.long_inventory.order))
        self.assertEqual(0, test_position.long_inventory_count)

        bid_price = 100.
        for i in range(5):
            step += 1
            pnl, is_long_order_filled, is_short_order_filled = \
                test_position.step_limit_order_pnl(
                    bid_price=bid_price, ask_price=ask_price, buy_volume=buy_volume,
                    sell_volume=sell_volume, step=step)
            pnl += pnl

        self.assertEqual(1, test_position.long_inventory_count)
        self.assertEqual(100.40,
                         round(test_position.long_inventory.average_price, 2))
        print("PnL: {}".format(pnl))
예제 #11
0
    def __init__(self,
                 *,
                 fitting_file='ETH-USD_2018-12-31.xz',
                 testing_file='ETH-USD_2019-01-01.xz',
                 step_size=1,
                 max_position=5,
                 window_size=10,
                 seed=1,
                 action_repeats=10,
                 training=True,
                 format_3d=False,
                 z_score=True):

        # properties required for instantiation
        self.action_repeats = action_repeats
        self._seed = seed
        self._random_state = np.random.RandomState(seed=self._seed)
        self.training = training
        self.step_size = step_size
        self.max_position = max_position
        self.window_size = window_size
        self.format_3d = format_3d  # e.g., [window, features, *NEW_AXIS*]

        self.action = 0
        # derive gym.env properties
        self.actions = np.eye(3)

        self.sym = testing_file[:7]  # slice the CCY from the filename

        # properties that get reset()
        self.reward = 0.0
        self.done = False
        self.local_step_number = 0
        self.midpoint = 0.0
        self.observation = None

        # get Broker class to keep track of PnL and orders
        self.broker = Broker(max_position=max_position)
        # get historical data for simulations
        self.sim = Sim(use_arctic=False)

        self.data = self._load_environment_data(fitting_file, testing_file)
        self.prices_ = self.data[
            'coinbase_midpoint'].values  # used to calculate PnL

        self.normalized_data = self.data.copy()
        self.data = self.data.values

        self.max_steps = self.data.shape[0] - self.step_size * \
                         self.action_repeats - 1

        # normalize midpoint data
        self.normalized_data['coinbase_midpoint'] = \
            np.log(self.normalized_data['coinbase_midpoint'].values)
        self.normalized_data['coinbase_midpoint'] = (
            self.normalized_data['coinbase_midpoint'] -
            self.normalized_data['coinbase_midpoint'].shift(1)).fillna(0.)

        # load indicators into the indicator manager
        self.tns = IndicatorManager()
        self.rsi = IndicatorManager()
        for window in INDICATOR_WINDOW:
            self.tns.add(('tns_{}'.format(window), TnS(window=window)))
            self.rsi.add(('rsi_{}'.format(window), RSI(window=window)))

        if z_score:
            logger.info("Pre-scaling {}-{} data...".format(
                self.sym, self._seed))
            self.normalized_data = self.normalized_data.apply(self.sim.z_score,
                                                              axis=1).values
            logger.info("...{}-{} pre-scaling complete.".format(
                self.sym, self._seed))
        else:
            self.normalized_data = self.normalized_data.values

        # rendering class
        self._render = TradingGraph(sym=self.sym)
        # graph midpoint prices
        self._render.reset_render_data(
            y_vec=self.prices_[:np.shape(self._render.x_vec)[0]])
        # buffer for appending lags
        self.data_buffer = list()

        self.action_space = spaces.Discrete(len(self.actions))
        self.reset()  # reset to load observation.shape
        self.observation_space = spaces.Box(low=-10,
                                            high=10,
                                            shape=self.observation.shape,
                                            dtype=np.float32)

        print(
            '{} PriceJump #{} instantiated.\nself.observation_space.shape : {}'
            .format(self.sym, self._seed, self.observation_space.shape))
예제 #12
0
    def __init__(self,
                 *,
                 fitting_file='LTC-USD_2019-04-07.csv.xz',
                 testing_file='LTC-USD_2019-04-08.csv.xz',
                 step_size=1,
                 max_position=5,
                 window_size=10,
                 seed=1,
                 action_repeats=10,
                 training=True,
                 format_3d=False,
                 z_score=True):

        # properties required for instantiation
        self.action_repeats = action_repeats
        self._seed = seed
        self._random_state = np.random.RandomState(seed=self._seed)
        self.training = training
        self.step_size = step_size
        self.max_position = max_position
        self.window_size = window_size
        self.format_3d = format_3d  # e.g., [window, features, *NEW_AXIS*]

        self.action = 0
        # derive gym.env properties
        self.actions = np.eye(3, dtype=np.float32)

        self.sym = testing_file[:7]  # slice the CCY from the filename

        # properties that get reset()
        self.reward = 0.0
        self.done = False
        self.local_step_number = 0
        self.midpoint = 0.0
        self.observation = None

        # get Broker class to keep track of PnL and orders
        self.broker = Broker(max_position=max_position)
        # get historical data for simulations
        self.sim = Sim(use_arctic=False, z_score=z_score)

        self.prices_, self.data, self.normalized_data = self.sim.load_environment_data(
            fitting_file, testing_file)

        self.max_steps = self.data.shape[0] - self.step_size * \
            self.action_repeats - 1

        # load indicators into the indicator manager
        self.tns = IndicatorManager()
        self.rsi = IndicatorManager()
        for window in INDICATOR_WINDOW:
            self.tns.add(('tns_{}'.format(window), TnS(window=window)))
            self.rsi.add(('rsi_{}'.format(window), RSI(window=window)))

        # rendering class
        self._render = TradingGraph(sym=self.sym)

        # graph midpoint prices
        self._render.reset_render_data(
            y_vec=self.prices_[:np.shape(self._render.x_vec)[0]])

        # buffer for appending lags
        self.data_buffer = list()

        self.action_space = spaces.Discrete(len(self.actions))
        self.reset()  # reset to load observation.shape
        self.observation_space = spaces.Box(low=-10,
                                            high=10,
                                            shape=self.observation.shape,
                                            dtype=np.float32)

        print(
            '{} PriceJump #{} instantiated.\nself.observation_space.shape : {}'
            .format(self.sym, self._seed, self.observation_space.shape))