예제 #1
0
 def reset(self):
     # Enforce that each GoalEnv uses a Goal-compatible observation space.
     if not isinstance(self.observation_space, gym_wmgds.spaces.Dict):
         raise error.Error('GoalEnv requires an observation space of type gym_wmgds.spaces.Dict')
     result = super(GoalEnv, self).reset()
     for key in ['observation', 'achieved_goal', 'desired_goal']:
         if key not in result:
             raise error.Error('GoalEnv requires the "{}" key to be part of the observation dictionary.'.format(key))
     return result
예제 #2
0
파일: monitor.py 프로젝트: ozcell/gym_wmgds
def collapse_env_infos(env_infos, training_dir):
    assert len(env_infos) > 0

    first = env_infos[0]
    for other in env_infos[1:]:
        if first != other:
            raise error.Error(
                'Found two unequal env_infos: {} and {}. This usually indicates that your training directory {} has commingled results from multiple runs.'
                .format(first, other, training_dir))

    for key in ['env_id', 'gym_wmgds_version']:
        if key not in first:
            raise error.Error(
                "env_info {} from training directory {} is missing expected key {}. This is unexpected and likely indicates a bug in gym_wmgds."
                .format(first, training_dir, key))
    return first
예제 #3
0
    def spec(self, id):
        match = env_id_re.search(id)
        if not match:
            raise error.Error(
                'Attempted to look up malformed environment ID: {}. (Currently all IDs must be of the form {}.)'
                .format(id.encode('utf-8'), env_id_re.pattern))

        try:
            return self.env_specs[id]
        except KeyError:
            # Parse the env name and check to see if it matches the non-version
            # part of a valid env (could also check the exact number here)
            env_name = match.group(1)
            matching_envs = [
                valid_env_name
                for valid_env_name, valid_env_spec in self.env_specs.items()
                if env_name == valid_env_spec._env_name
            ]
            if matching_envs:
                raise error.DeprecatedEnv(
                    'Env {} not found (valid versions include {})'.format(
                        id, matching_envs))
            else:
                raise error.UnregisteredEnv(
                    'No registered env with id: {}'.format(id))
예제 #4
0
    def _sample_goal(self):
        # Select a goal for the object position.
        target_pos = None
        if self.target_position == 'random':
            assert self.target_position_range.shape == (3, 2)
            offset = self.np_random.uniform(self.target_position_range[:, 0],
                                            self.target_position_range[:, 1])
            assert offset.shape == (3, )
            target_pos = self.sim.data.get_joint_qpos(
                'object:joint')[:3] + offset
        elif self.target_position in ['ignore', 'fixed']:
            target_pos = self.sim.data.get_joint_qpos('object:joint')[:3]
        else:
            raise error.Error('Unknown target_position option "{}".'.format(
                self.target_position))
        assert target_pos is not None
        assert target_pos.shape == (3, )

        # Select a goal for the object rotation.
        target_quat = None
        if self.target_rotation == 'z':
            angle = self.np_random.uniform(-np.pi, np.pi)
            axis = np.array([0., 0., 1.])
            target_quat = quat_from_angle_and_axis(angle, axis)
        elif self.target_rotation == 'parallel':
            angle = self.np_random.uniform(-np.pi, np.pi)
            axis = np.array([0., 0., 1.])
            target_quat = quat_from_angle_and_axis(angle, axis)
            parallel_quat = self.parallel_quats[self.np_random.randint(
                len(self.parallel_quats))]
            target_quat = rotations.quat_mul(target_quat, parallel_quat)
        elif self.target_rotation == 'xyz':
            angle = self.np_random.uniform(-np.pi, np.pi)
            axis = self.np_random.uniform(-1., 1., size=3)
            target_quat = quat_from_angle_and_axis(angle, axis)
        elif self.target_rotation in ['ignore', 'fixed']:
            target_quat = self.sim.data.get_joint_qpos('object:joint')
        else:
            raise error.Error('Unknown target_rotation option "{}".'.format(
                self.target_rotation))
        assert target_quat is not None
        assert target_quat.shape == (4, )

        target_quat /= np.linalg.norm(target_quat)  # normalized quaternion
        goal = np.concatenate([target_pos, target_quat])
        return goal
예제 #5
0
파일: monitor.py 프로젝트: ozcell/gym_wmgds
 def _set_mode(self, mode):
     if mode == 'evaluation':
         type = 'e'
     elif mode == 'training':
         type = 't'
     else:
         raise error.Error(
             'Invalid mode {}: must be "training" or "evaluation"', mode)
     self.stats_recorder.type = type
예제 #6
0
    def before_reset(self):
        assert not self.closed

        if self.done is not None and not self.done and self.steps > 0:
            raise error.Error(
                "Tried to reset environment which is not done. While the monitor is active for {}, you cannot call reset() unless the episode is over."
                .format(self.env_id))

        self.done = False
        if self.initial_reset_timestamp is None:
            self.initial_reset_timestamp = time.time()
예제 #7
0
    def __init__(self,
                 id,
                 entry_point=None,
                 trials=100,
                 reward_threshold=None,
                 local_only=False,
                 kwargs=None,
                 nondeterministic=False,
                 tags=None,
                 max_episode_steps=None,
                 max_episode_seconds=None,
                 timestep_limit=None):
        self.id = id
        # Evaluation parameters
        self.trials = trials
        self.reward_threshold = reward_threshold
        # Environment properties
        self.nondeterministic = nondeterministic

        if tags is None:
            tags = {}
        self.tags = tags

        # BACKWARDS COMPAT 2017/1/18
        if tags.get('wrapper_config.TimeLimit.max_episode_steps'):
            max_episode_steps = tags.get(
                'wrapper_config.TimeLimit.max_episode_steps')
            # TODO: Add the following deprecation warning after 2017/02/18
            # warnings.warn("DEPRECATION WARNING wrapper_config.TimeLimit has been deprecated. Replace any calls to `register(tags={'wrapper_config.TimeLimit.max_episode_steps': 200)}` with `register(max_episode_steps=200)`. This change was made 2017/1/31 and is included in gym_wmgds version 0.8.0. If you are getting many of these warnings, you may need to update universe past version 0.21.3")

        tags['wrapper_config.TimeLimit.max_episode_steps'] = max_episode_steps
        ######

        # BACKWARDS COMPAT 2017/1/31
        if timestep_limit is not None:
            max_episode_steps = timestep_limit
            # TODO: Add the following deprecation warning after 2017/03/01
            # warnings.warn("register(timestep_limit={}) is deprecated. Use register(max_episode_steps={}) instead.".format(timestep_limit, timestep_limit))
        ######

        self.max_episode_steps = max_episode_steps
        self.max_episode_seconds = max_episode_seconds

        # We may make some of these other parameters public if they're
        # useful.
        match = env_id_re.search(id)
        if not match:
            raise error.Error(
                'Attempted to register malformed environment ID: {}. (Currently all IDs must be of the form {}.)'
                .format(id, env_id_re.pattern))
        self._env_name = match.group(1)
        self._entry_point = entry_point
        self._local_only = local_only
        self._kwargs = {} if kwargs is None else kwargs
예제 #8
0
def get_display(spec):
    """Convert a display specification (such as :0) into an actual Display
    object.

    Pyglet only supports multiple Displays on Linux.
    """
    if spec is None:
        return None
    elif isinstance(spec, six.string_types):
        return pyglet.canvas.Display(spec)
    else:
        raise error.Error('Invalid display specification: {}. (Must be a string like :0 or None.)'.format(spec))
예제 #9
0
파일: seeding.py 프로젝트: ozcell/gym_wmgds
def _int_list_from_bigint(bigint):
    # Special case 0
    if bigint < 0:
        raise error.Error('Seed must be non-negative, not {}'.format(bigint))
    elif bigint == 0:
        return [0]

    ints = []
    while bigint > 0:
        bigint, mod = divmod(bigint, 2**32)
        ints.append(mod)
    return ints
예제 #10
0
파일: seeding.py 프로젝트: ozcell/gym_wmgds
def np_random(seed=None):
    if seed is not None and not (isinstance(seed, integer_types)
                                 and 0 <= seed):
        raise error.Error(
            'Seed must be a non-negative integer or omitted, not {}'.format(
                seed))

    seed = create_seed(seed)

    rng = np.random.RandomState()
    rng.seed(_int_list_from_bigint(hash_seed(seed)))
    return rng, seed
예제 #11
0
    def __init__(self,
                 game='pong',
                 obs_type='ram',
                 frameskip=(2, 5),
                 repeat_action_probability=0.,
                 full_action_space=False):
        """Frameskip should be either a tuple (indicating a random range to
        choose from, with the top value exclude), or an int."""

        utils.EzPickle.__init__(self, game, obs_type, frameskip,
                                repeat_action_probability)
        assert obs_type in ('ram', 'image')

        self.game_path = atari_py.get_game_path(game)
        if not os.path.exists(self.game_path):
            raise IOError('You asked for game %s but path %s does not exist' %
                          (game, self.game_path))
        self._obs_type = obs_type
        self.frameskip = frameskip
        self.ale = atari_py.ALEInterface()
        self.viewer = None

        # Tune (or disable) ALE's action repeat:
        # https://github.com/openai/gym_wmgds/issues/349
        assert isinstance(
            repeat_action_probability,
            (float, int)), "Invalid repeat_action_probability: {!r}".format(
                repeat_action_probability)
        self.ale.setFloat('repeat_action_probability'.encode('utf-8'),
                          repeat_action_probability)

        self.seed()

        self._action_set = (self.ale.getLegalActionSet() if full_action_space
                            else self.ale.getMinimalActionSet())
        self.action_space = spaces.Discrete(len(self._action_set))

        (screen_width, screen_height) = self.ale.getScreenDims()
        if self._obs_type == 'ram':
            self.observation_space = spaces.Box(low=0,
                                                high=255,
                                                dtype=np.uint8,
                                                shape=(128, ))
        elif self._obs_type == 'image':
            self.observation_space = spaces.Box(low=0,
                                                high=255,
                                                shape=(screen_height,
                                                       screen_width, 3),
                                                dtype=np.uint8)
        else:
            raise error.Error('Unrecognized observation type: {}'.format(
                self._obs_type))
예제 #12
0
    def make(self, **kwargs):
        """Instantiates an instance of the environment with appropriate kwargs"""
        if self._entry_point is None:
            raise error.Error(
                'Attempting to make deprecated env {}. (HINT: is there a newer registered version of this env?)'
                .format(self.id))
        _kwargs = self._kwargs.copy()
        _kwargs.update(kwargs)
        if callable(self._entry_point):
            env = self._entry_point(**_kwargs)
        else:
            cls = load(self._entry_point)
            env = cls(**_kwargs)

        # Make the enviroment aware of which spec it came from.
        env.unwrapped.spec = self

        return env
예제 #13
0
파일: seeding.py 프로젝트: ozcell/gym_wmgds
def create_seed(a=None, max_bytes=8):
    """Create a strong random seed. Otherwise, Python 2 would seed using
    the system time, which might be non-robust especially in the
    presence of concurrency.

    Args:
        a (Optional[int, str]): None seeds from an operating system specific randomness source.
        max_bytes: Maximum number of bytes to use in the seed.
    """
    # Adapted from https://svn.python.org/projects/python/tags/r32/Lib/random.py
    if a is None:
        a = _bigint_from_bytes(os.urandom(max_bytes))
    elif isinstance(a, str):
        a = a.encode('utf8')
        a += hashlib.sha512(a).digest()
        a = _bigint_from_bytes(a[:max_bytes])
    elif isinstance(a, integer_types):
        a = a % 2**(8 * max_bytes)
    else:
        raise error.Error('Invalid type for seed: {} ({})'.format(type(a), a))

    return a
예제 #14
0
    def __init__(self,
                 env,
                 path=None,
                 metadata=None,
                 enabled=True,
                 base_path=None):
        modes = env.metadata.get('render.modes', [])
        self._async = env.metadata.get('semantics.async')
        self.enabled = enabled

        # Don't bother setting anything else if not enabled
        if not self.enabled:
            return

        self.ansi_mode = False
        if 'rgb_array' not in modes:
            if 'ansi' in modes:
                self.ansi_mode = True
            else:
                logger.info(
                    'Disabling video recorder because {} neither supports video mode "rgb_array" nor "ansi".'
                    .format(env))
                # Whoops, turns out we shouldn't be enabled after all
                self.enabled = False
                return

        if path is not None and base_path is not None:
            raise error.Error(
                "You can pass at most one of `path` or `base_path`.")

        self.last_frame = None
        self.env = env

        required_ext = '.json' if self.ansi_mode else '.mp4'
        if path is None:
            if base_path is not None:
                # Base path given, append ext
                path = base_path + required_ext
            else:
                # Otherwise, just generate a unique filename
                with tempfile.NamedTemporaryFile(suffix=required_ext,
                                                 delete=False) as f:
                    path = f.name
        self.path = path

        path_base, actual_ext = os.path.splitext(self.path)

        if actual_ext != required_ext:
            hint = " HINT: The environment is text-only, therefore we're recording its text output in a structured JSON format." if self.ansi_mode else ''
            raise error.Error(
                "Invalid path given: {} -- must have file extension {}.{}".
                format(self.path, required_ext, hint))
        # Touch the file in any case, so we know it's present. (This
        # corrects for platform platform differences. Using ffmpeg on
        # OS X, the file is precreated, but not on Linux.
        touch(path)

        self.frames_per_sec = env.metadata.get('video.frames_per_second', 30)
        self.encoder = None  # lazily start the process
        self.broken = False

        # Dump metadata
        self.metadata = metadata or {}
        self.metadata[
            'content_type'] = 'video/vnd.openai.ansivid' if self.ansi_mode else 'video/mp4'
        self.metadata_path = '{}.meta.json'.format(path_base)
        self.write_metadata()

        logger.info('Starting new video recorder writing to %s', self.path)
        self.empty = True
예제 #15
0
파일: monitor.py 프로젝트: ozcell/gym_wmgds
    def _start(self,
               directory,
               video_callable=None,
               force=False,
               resume=False,
               write_upon_reset=False,
               uid=None,
               mode=None):
        """Start monitoring.

        Args:
            directory (str): A per-training run directory where to record stats.
            video_callable (Optional[function, False]): function that takes in the index of the episode and outputs a boolean, indicating whether we should record a video on this episode. The default (for video_callable is None) is to take perfect cubes, capped at 1000. False disables video recording.
            force (bool): Clear out existing training data from this directory (by deleting every file prefixed with "openaigym_wmgds.").
            resume (bool): Retain the training data already in this directory, which will be merged with our new data
            write_upon_reset (bool): Write the manifest file on each reset. (This is currently a JSON file, so writing it is somewhat expensive.)
            uid (Optional[str]): A unique id used as part of the suffix for the file. By default, uses os.getpid().
            mode (['evaluation', 'training']): Whether this is an evaluation or training episode.
        """
        if self.env.spec is None:
            logger.warn(
                "Trying to monitor an environment which has no 'spec' set. This usually means you did not create it via 'gym_wmgds.make', and is recommended only for advanced users."
            )
            env_id = '(unknown)'
        else:
            env_id = self.env.spec.id

        if not os.path.exists(directory):
            logger.info('Creating monitor directory %s', directory)
            if six.PY3:
                os.makedirs(directory, exist_ok=True)
            else:
                os.makedirs(directory)

        if video_callable is None:
            video_callable = capped_cubic_video_schedule
        elif video_callable == False:
            video_callable = disable_videos
        elif not callable(video_callable):
            raise error.Error(
                'You must provide a function, None, or False for video_callable, not {}: {}'
                .format(type(video_callable), video_callable))
        self.video_callable = video_callable

        # Check on whether we need to clear anything
        if force:
            clear_monitor_files(directory)
        elif not resume:
            training_manifests = detect_training_manifests(directory)
            if len(training_manifests) > 0:
                raise error.Error(
                    '''Trying to write to monitor directory {} with existing monitor files: {}.

 You should use a unique directory for each training run, or use 'force=True' to automatically clear previous monitor files.'''
                    .format(directory, ', '.join(training_manifests[:5])))

        self._monitor_id = monitor_closer.register(self)

        self.enabled = True
        self.directory = os.path.abspath(directory)
        # We use the 'openai-gym_wmgds' prefix to determine if a file is
        # ours
        self.file_prefix = FILE_PREFIX
        self.file_infix = '{}.{}'.format(self._monitor_id,
                                         uid if uid else os.getpid())

        self.stats_recorder = stats_recorder.StatsRecorder(
            directory,
            '{}.episode_batch.{}'.format(self.file_prefix, self.file_infix),
            autoreset=self.env_semantics_autoreset,
            env_id=env_id)

        if not os.path.exists(directory): os.mkdir(directory)
        self.write_upon_reset = write_upon_reset

        if mode is not None:
            self._set_mode(mode)
예제 #16
0
 def type(self, type):
     if type not in ['t', 'e']:
         raise error.Error(
             'Invalid episode type {}: must be t for training or e for evaluation',
             type)
     self._type = type
예제 #17
0
    def _reset_sim(self):
        self.sim.set_state(self.initial_state)
        self.sim.forward()

        initial_qpos = self.sim.data.get_joint_qpos('object:joint').copy()
        initial_pos, initial_quat = initial_qpos[:3], initial_qpos[3:]
        assert initial_qpos.shape == (7, )
        assert initial_pos.shape == (3, )
        assert initial_quat.shape == (4, )
        initial_qpos = None

        # Randomization initial rotation.
        if self.randomize_initial_rotation:
            if self.target_rotation == 'z':
                angle = self.np_random.uniform(-np.pi, np.pi)
                axis = np.array([0., 0., 1.])
                offset_quat = quat_from_angle_and_axis(angle, axis)
                initial_quat = rotations.quat_mul(initial_quat, offset_quat)
            elif self.target_rotation == 'parallel':
                angle = self.np_random.uniform(-np.pi, np.pi)
                axis = np.array([0., 0., 1.])
                z_quat = quat_from_angle_and_axis(angle, axis)
                parallel_quat = self.parallel_quats[self.np_random.randint(
                    len(self.parallel_quats))]
                offset_quat = rotations.quat_mul(z_quat, parallel_quat)
                initial_quat = rotations.quat_mul(initial_quat, offset_quat)
            elif self.target_rotation in ['xyz', 'ignore']:
                angle = self.np_random.uniform(-np.pi, np.pi)
                axis = self.np_random.uniform(-1., 1., size=3)
                offset_quat = quat_from_angle_and_axis(angle, axis)
                initial_quat = rotations.quat_mul(initial_quat, offset_quat)
            elif self.target_rotation == 'fixed':
                pass
            else:
                raise error.Error(
                    'Unknown target_rotation option "{}".'.format(
                        self.target_rotation))

        # Randomize initial position.
        if self.randomize_initial_position:
            if self.target_position != 'fixed':
                initial_pos += self.np_random.normal(size=3, scale=0.005)

        initial_quat /= np.linalg.norm(initial_quat)
        initial_qpos = np.concatenate([initial_pos, initial_quat])
        self.sim.data.set_joint_qpos('object:joint', initial_qpos)

        def is_on_palm():
            self.sim.forward()
            cube_middle_idx = self.sim.model.site_name2id('object:center')
            cube_middle_pos = self.sim.data.site_xpos[cube_middle_idx]
            is_on_palm = (cube_middle_pos[2] > 0.04)
            return is_on_palm

        # Run the simulation for a bunch of timesteps to let everything settle in.
        for _ in range(10):
            self._set_action(np.zeros(20))
            try:
                self.sim.step()
            except mujoco_py.MujocoException:
                return False
        return is_on_palm()
예제 #18
0
 def register(self, id, **kwargs):
     if id in self.env_specs:
         raise error.Error('Cannot re-register id: {}'.format(id))
     self.env_specs[id] = EnvSpec(id, **kwargs)