def reset(self): # Enforce that each GoalEnv uses a Goal-compatible observation space. if not isinstance(self.observation_space, gym_wmgds.spaces.Dict): raise error.Error('GoalEnv requires an observation space of type gym_wmgds.spaces.Dict') result = super(GoalEnv, self).reset() for key in ['observation', 'achieved_goal', 'desired_goal']: if key not in result: raise error.Error('GoalEnv requires the "{}" key to be part of the observation dictionary.'.format(key)) return result
def collapse_env_infos(env_infos, training_dir): assert len(env_infos) > 0 first = env_infos[0] for other in env_infos[1:]: if first != other: raise error.Error( 'Found two unequal env_infos: {} and {}. This usually indicates that your training directory {} has commingled results from multiple runs.' .format(first, other, training_dir)) for key in ['env_id', 'gym_wmgds_version']: if key not in first: raise error.Error( "env_info {} from training directory {} is missing expected key {}. This is unexpected and likely indicates a bug in gym_wmgds." .format(first, training_dir, key)) return first
def spec(self, id): match = env_id_re.search(id) if not match: raise error.Error( 'Attempted to look up malformed environment ID: {}. (Currently all IDs must be of the form {}.)' .format(id.encode('utf-8'), env_id_re.pattern)) try: return self.env_specs[id] except KeyError: # Parse the env name and check to see if it matches the non-version # part of a valid env (could also check the exact number here) env_name = match.group(1) matching_envs = [ valid_env_name for valid_env_name, valid_env_spec in self.env_specs.items() if env_name == valid_env_spec._env_name ] if matching_envs: raise error.DeprecatedEnv( 'Env {} not found (valid versions include {})'.format( id, matching_envs)) else: raise error.UnregisteredEnv( 'No registered env with id: {}'.format(id))
def _sample_goal(self): # Select a goal for the object position. target_pos = None if self.target_position == 'random': assert self.target_position_range.shape == (3, 2) offset = self.np_random.uniform(self.target_position_range[:, 0], self.target_position_range[:, 1]) assert offset.shape == (3, ) target_pos = self.sim.data.get_joint_qpos( 'object:joint')[:3] + offset elif self.target_position in ['ignore', 'fixed']: target_pos = self.sim.data.get_joint_qpos('object:joint')[:3] else: raise error.Error('Unknown target_position option "{}".'.format( self.target_position)) assert target_pos is not None assert target_pos.shape == (3, ) # Select a goal for the object rotation. target_quat = None if self.target_rotation == 'z': angle = self.np_random.uniform(-np.pi, np.pi) axis = np.array([0., 0., 1.]) target_quat = quat_from_angle_and_axis(angle, axis) elif self.target_rotation == 'parallel': angle = self.np_random.uniform(-np.pi, np.pi) axis = np.array([0., 0., 1.]) target_quat = quat_from_angle_and_axis(angle, axis) parallel_quat = self.parallel_quats[self.np_random.randint( len(self.parallel_quats))] target_quat = rotations.quat_mul(target_quat, parallel_quat) elif self.target_rotation == 'xyz': angle = self.np_random.uniform(-np.pi, np.pi) axis = self.np_random.uniform(-1., 1., size=3) target_quat = quat_from_angle_and_axis(angle, axis) elif self.target_rotation in ['ignore', 'fixed']: target_quat = self.sim.data.get_joint_qpos('object:joint') else: raise error.Error('Unknown target_rotation option "{}".'.format( self.target_rotation)) assert target_quat is not None assert target_quat.shape == (4, ) target_quat /= np.linalg.norm(target_quat) # normalized quaternion goal = np.concatenate([target_pos, target_quat]) return goal
def _set_mode(self, mode): if mode == 'evaluation': type = 'e' elif mode == 'training': type = 't' else: raise error.Error( 'Invalid mode {}: must be "training" or "evaluation"', mode) self.stats_recorder.type = type
def before_reset(self): assert not self.closed if self.done is not None and not self.done and self.steps > 0: raise error.Error( "Tried to reset environment which is not done. While the monitor is active for {}, you cannot call reset() unless the episode is over." .format(self.env_id)) self.done = False if self.initial_reset_timestamp is None: self.initial_reset_timestamp = time.time()
def __init__(self, id, entry_point=None, trials=100, reward_threshold=None, local_only=False, kwargs=None, nondeterministic=False, tags=None, max_episode_steps=None, max_episode_seconds=None, timestep_limit=None): self.id = id # Evaluation parameters self.trials = trials self.reward_threshold = reward_threshold # Environment properties self.nondeterministic = nondeterministic if tags is None: tags = {} self.tags = tags # BACKWARDS COMPAT 2017/1/18 if tags.get('wrapper_config.TimeLimit.max_episode_steps'): max_episode_steps = tags.get( 'wrapper_config.TimeLimit.max_episode_steps') # TODO: Add the following deprecation warning after 2017/02/18 # warnings.warn("DEPRECATION WARNING wrapper_config.TimeLimit has been deprecated. Replace any calls to `register(tags={'wrapper_config.TimeLimit.max_episode_steps': 200)}` with `register(max_episode_steps=200)`. This change was made 2017/1/31 and is included in gym_wmgds version 0.8.0. If you are getting many of these warnings, you may need to update universe past version 0.21.3") tags['wrapper_config.TimeLimit.max_episode_steps'] = max_episode_steps ###### # BACKWARDS COMPAT 2017/1/31 if timestep_limit is not None: max_episode_steps = timestep_limit # TODO: Add the following deprecation warning after 2017/03/01 # warnings.warn("register(timestep_limit={}) is deprecated. Use register(max_episode_steps={}) instead.".format(timestep_limit, timestep_limit)) ###### self.max_episode_steps = max_episode_steps self.max_episode_seconds = max_episode_seconds # We may make some of these other parameters public if they're # useful. match = env_id_re.search(id) if not match: raise error.Error( 'Attempted to register malformed environment ID: {}. (Currently all IDs must be of the form {}.)' .format(id, env_id_re.pattern)) self._env_name = match.group(1) self._entry_point = entry_point self._local_only = local_only self._kwargs = {} if kwargs is None else kwargs
def get_display(spec): """Convert a display specification (such as :0) into an actual Display object. Pyglet only supports multiple Displays on Linux. """ if spec is None: return None elif isinstance(spec, six.string_types): return pyglet.canvas.Display(spec) else: raise error.Error('Invalid display specification: {}. (Must be a string like :0 or None.)'.format(spec))
def _int_list_from_bigint(bigint): # Special case 0 if bigint < 0: raise error.Error('Seed must be non-negative, not {}'.format(bigint)) elif bigint == 0: return [0] ints = [] while bigint > 0: bigint, mod = divmod(bigint, 2**32) ints.append(mod) return ints
def np_random(seed=None): if seed is not None and not (isinstance(seed, integer_types) and 0 <= seed): raise error.Error( 'Seed must be a non-negative integer or omitted, not {}'.format( seed)) seed = create_seed(seed) rng = np.random.RandomState() rng.seed(_int_list_from_bigint(hash_seed(seed))) return rng, seed
def __init__(self, game='pong', obs_type='ram', frameskip=(2, 5), repeat_action_probability=0., full_action_space=False): """Frameskip should be either a tuple (indicating a random range to choose from, with the top value exclude), or an int.""" utils.EzPickle.__init__(self, game, obs_type, frameskip, repeat_action_probability) assert obs_type in ('ram', 'image') self.game_path = atari_py.get_game_path(game) if not os.path.exists(self.game_path): raise IOError('You asked for game %s but path %s does not exist' % (game, self.game_path)) self._obs_type = obs_type self.frameskip = frameskip self.ale = atari_py.ALEInterface() self.viewer = None # Tune (or disable) ALE's action repeat: # https://github.com/openai/gym_wmgds/issues/349 assert isinstance( repeat_action_probability, (float, int)), "Invalid repeat_action_probability: {!r}".format( repeat_action_probability) self.ale.setFloat('repeat_action_probability'.encode('utf-8'), repeat_action_probability) self.seed() self._action_set = (self.ale.getLegalActionSet() if full_action_space else self.ale.getMinimalActionSet()) self.action_space = spaces.Discrete(len(self._action_set)) (screen_width, screen_height) = self.ale.getScreenDims() if self._obs_type == 'ram': self.observation_space = spaces.Box(low=0, high=255, dtype=np.uint8, shape=(128, )) elif self._obs_type == 'image': self.observation_space = spaces.Box(low=0, high=255, shape=(screen_height, screen_width, 3), dtype=np.uint8) else: raise error.Error('Unrecognized observation type: {}'.format( self._obs_type))
def make(self, **kwargs): """Instantiates an instance of the environment with appropriate kwargs""" if self._entry_point is None: raise error.Error( 'Attempting to make deprecated env {}. (HINT: is there a newer registered version of this env?)' .format(self.id)) _kwargs = self._kwargs.copy() _kwargs.update(kwargs) if callable(self._entry_point): env = self._entry_point(**_kwargs) else: cls = load(self._entry_point) env = cls(**_kwargs) # Make the enviroment aware of which spec it came from. env.unwrapped.spec = self return env
def create_seed(a=None, max_bytes=8): """Create a strong random seed. Otherwise, Python 2 would seed using the system time, which might be non-robust especially in the presence of concurrency. Args: a (Optional[int, str]): None seeds from an operating system specific randomness source. max_bytes: Maximum number of bytes to use in the seed. """ # Adapted from https://svn.python.org/projects/python/tags/r32/Lib/random.py if a is None: a = _bigint_from_bytes(os.urandom(max_bytes)) elif isinstance(a, str): a = a.encode('utf8') a += hashlib.sha512(a).digest() a = _bigint_from_bytes(a[:max_bytes]) elif isinstance(a, integer_types): a = a % 2**(8 * max_bytes) else: raise error.Error('Invalid type for seed: {} ({})'.format(type(a), a)) return a
def __init__(self, env, path=None, metadata=None, enabled=True, base_path=None): modes = env.metadata.get('render.modes', []) self._async = env.metadata.get('semantics.async') self.enabled = enabled # Don't bother setting anything else if not enabled if not self.enabled: return self.ansi_mode = False if 'rgb_array' not in modes: if 'ansi' in modes: self.ansi_mode = True else: logger.info( 'Disabling video recorder because {} neither supports video mode "rgb_array" nor "ansi".' .format(env)) # Whoops, turns out we shouldn't be enabled after all self.enabled = False return if path is not None and base_path is not None: raise error.Error( "You can pass at most one of `path` or `base_path`.") self.last_frame = None self.env = env required_ext = '.json' if self.ansi_mode else '.mp4' if path is None: if base_path is not None: # Base path given, append ext path = base_path + required_ext else: # Otherwise, just generate a unique filename with tempfile.NamedTemporaryFile(suffix=required_ext, delete=False) as f: path = f.name self.path = path path_base, actual_ext = os.path.splitext(self.path) if actual_ext != required_ext: hint = " HINT: The environment is text-only, therefore we're recording its text output in a structured JSON format." if self.ansi_mode else '' raise error.Error( "Invalid path given: {} -- must have file extension {}.{}". format(self.path, required_ext, hint)) # Touch the file in any case, so we know it's present. (This # corrects for platform platform differences. Using ffmpeg on # OS X, the file is precreated, but not on Linux. touch(path) self.frames_per_sec = env.metadata.get('video.frames_per_second', 30) self.encoder = None # lazily start the process self.broken = False # Dump metadata self.metadata = metadata or {} self.metadata[ 'content_type'] = 'video/vnd.openai.ansivid' if self.ansi_mode else 'video/mp4' self.metadata_path = '{}.meta.json'.format(path_base) self.write_metadata() logger.info('Starting new video recorder writing to %s', self.path) self.empty = True
def _start(self, directory, video_callable=None, force=False, resume=False, write_upon_reset=False, uid=None, mode=None): """Start monitoring. Args: directory (str): A per-training run directory where to record stats. video_callable (Optional[function, False]): function that takes in the index of the episode and outputs a boolean, indicating whether we should record a video on this episode. The default (for video_callable is None) is to take perfect cubes, capped at 1000. False disables video recording. force (bool): Clear out existing training data from this directory (by deleting every file prefixed with "openaigym_wmgds."). resume (bool): Retain the training data already in this directory, which will be merged with our new data write_upon_reset (bool): Write the manifest file on each reset. (This is currently a JSON file, so writing it is somewhat expensive.) uid (Optional[str]): A unique id used as part of the suffix for the file. By default, uses os.getpid(). mode (['evaluation', 'training']): Whether this is an evaluation or training episode. """ if self.env.spec is None: logger.warn( "Trying to monitor an environment which has no 'spec' set. This usually means you did not create it via 'gym_wmgds.make', and is recommended only for advanced users." ) env_id = '(unknown)' else: env_id = self.env.spec.id if not os.path.exists(directory): logger.info('Creating monitor directory %s', directory) if six.PY3: os.makedirs(directory, exist_ok=True) else: os.makedirs(directory) if video_callable is None: video_callable = capped_cubic_video_schedule elif video_callable == False: video_callable = disable_videos elif not callable(video_callable): raise error.Error( 'You must provide a function, None, or False for video_callable, not {}: {}' .format(type(video_callable), video_callable)) self.video_callable = video_callable # Check on whether we need to clear anything if force: clear_monitor_files(directory) elif not resume: training_manifests = detect_training_manifests(directory) if len(training_manifests) > 0: raise error.Error( '''Trying to write to monitor directory {} with existing monitor files: {}. You should use a unique directory for each training run, or use 'force=True' to automatically clear previous monitor files.''' .format(directory, ', '.join(training_manifests[:5]))) self._monitor_id = monitor_closer.register(self) self.enabled = True self.directory = os.path.abspath(directory) # We use the 'openai-gym_wmgds' prefix to determine if a file is # ours self.file_prefix = FILE_PREFIX self.file_infix = '{}.{}'.format(self._monitor_id, uid if uid else os.getpid()) self.stats_recorder = stats_recorder.StatsRecorder( directory, '{}.episode_batch.{}'.format(self.file_prefix, self.file_infix), autoreset=self.env_semantics_autoreset, env_id=env_id) if not os.path.exists(directory): os.mkdir(directory) self.write_upon_reset = write_upon_reset if mode is not None: self._set_mode(mode)
def type(self, type): if type not in ['t', 'e']: raise error.Error( 'Invalid episode type {}: must be t for training or e for evaluation', type) self._type = type
def _reset_sim(self): self.sim.set_state(self.initial_state) self.sim.forward() initial_qpos = self.sim.data.get_joint_qpos('object:joint').copy() initial_pos, initial_quat = initial_qpos[:3], initial_qpos[3:] assert initial_qpos.shape == (7, ) assert initial_pos.shape == (3, ) assert initial_quat.shape == (4, ) initial_qpos = None # Randomization initial rotation. if self.randomize_initial_rotation: if self.target_rotation == 'z': angle = self.np_random.uniform(-np.pi, np.pi) axis = np.array([0., 0., 1.]) offset_quat = quat_from_angle_and_axis(angle, axis) initial_quat = rotations.quat_mul(initial_quat, offset_quat) elif self.target_rotation == 'parallel': angle = self.np_random.uniform(-np.pi, np.pi) axis = np.array([0., 0., 1.]) z_quat = quat_from_angle_and_axis(angle, axis) parallel_quat = self.parallel_quats[self.np_random.randint( len(self.parallel_quats))] offset_quat = rotations.quat_mul(z_quat, parallel_quat) initial_quat = rotations.quat_mul(initial_quat, offset_quat) elif self.target_rotation in ['xyz', 'ignore']: angle = self.np_random.uniform(-np.pi, np.pi) axis = self.np_random.uniform(-1., 1., size=3) offset_quat = quat_from_angle_and_axis(angle, axis) initial_quat = rotations.quat_mul(initial_quat, offset_quat) elif self.target_rotation == 'fixed': pass else: raise error.Error( 'Unknown target_rotation option "{}".'.format( self.target_rotation)) # Randomize initial position. if self.randomize_initial_position: if self.target_position != 'fixed': initial_pos += self.np_random.normal(size=3, scale=0.005) initial_quat /= np.linalg.norm(initial_quat) initial_qpos = np.concatenate([initial_pos, initial_quat]) self.sim.data.set_joint_qpos('object:joint', initial_qpos) def is_on_palm(): self.sim.forward() cube_middle_idx = self.sim.model.site_name2id('object:center') cube_middle_pos = self.sim.data.site_xpos[cube_middle_idx] is_on_palm = (cube_middle_pos[2] > 0.04) return is_on_palm # Run the simulation for a bunch of timesteps to let everything settle in. for _ in range(10): self._set_action(np.zeros(20)) try: self.sim.step() except mujoco_py.MujocoException: return False return is_on_palm()
def register(self, id, **kwargs): if id in self.env_specs: raise error.Error('Cannot re-register id: {}'.format(id)) self.env_specs[id] = EnvSpec(id, **kwargs)