def to_H2OFrame(ip, port): # Connect to a pre-existing cluster h2o.init(ip, port) # TODO: negative testing ## 1. list # a. single row python_obj = [1, "a", 2.5, "bcd", 0] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=1, cols=5) # b. single column python_obj = [[1], [2], [3.7], [8], [9]] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # c. multiple rows, columns python_obj = [[6, 7, 8, 9, 10], [1, 2, 3, 4, 5], [3, 2, 2, 2, 2]] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) python_obj = [["a", "b"], ["c", "d"]] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=2, cols=2) # d. jagged python_obj = [[6, 7, 8, 9, 10], [1, 2, 3, 4], [3, 2, 2]] the_frame = h2o.H2OFrame(python_obj=python_obj) #h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) TODO ## 2. tuple # a. single row python_obj = (1, "a", 2.5, "bcd", 0) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=1, cols=5) # b. single column python_obj = ((1, ), (2, ), (3.7, ), (8, ), (9, )) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # c. multiple rows, columns python_obj = ((6, 7, 8, 9, 10), (1, 2, 3, 4, 5), (3, 2, 2, 2, 2)) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) # d. jagged python_obj = ((6, 7, 8, 9, 10), (1, 2, 3, 4), (3, 2, 2)) the_frame = h2o.H2OFrame(python_obj=python_obj) #h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) TODO ## 3. list-tuple mixed # a. single column python_obj = ((1, ), [2], (3.7, ), [8], (9, )) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # b. single column python_obj = [(1, ), [2], (3.7, ), [8], (9, )] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # c. multiple rows, columns python_obj = ([6, 7, 8, 9, 10], (1, 2, 3, 4, 5), [3, 2, 2, 2, 2]) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) # d. multiple rows, columns python_obj = [(6, 7, 8, 9, 10), [1, 2, 3, 4, 5], (3, 2, 2, 2, 2)] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) # e. jagged python_obj = [(6, 7, 8, 9, 10), [1, 2, 3, 4], (3, 2, 2)] the_frame = h2o.H2OFrame(python_obj=python_obj) # h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) TODO # f. jagged python_obj = ((6, 7, 8, 9, 10), [1, 2, 3, 4], (3, 2, 2)) the_frame = h2o.H2OFrame(python_obj=python_obj)
def to_H2OFrame(ip,port): # Connect to a pre-existing cluster h2o.init(ip,port) # TODO: negative testing ## 1. list # a. single row python_obj = [1, "a", 2.5, "bcd", 0] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=1, cols=5) # b. single column python_obj = [[1], [2], [3.7], [8], [9]] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # c. multiple rows, columns python_obj = [[6,7,8,9,10], [1,2,3,4,5], [3,2,2,2,2]] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) python_obj = [["a", "b"], ["c", "d"]] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=2, cols=2) # d. jagged python_obj = [[6,7,8,9,10], [1,2,3,4], [3,2,2]] the_frame = h2o.H2OFrame(python_obj=python_obj) #h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) TODO ## 2. tuple # a. single row python_obj = (1, "a", 2.5, "bcd", 0) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=1, cols=5) # b. single column python_obj = ((1,), (2,), (3.7,), (8,), (9,)) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # c. multiple rows, columns python_obj = ((6,7,8,9,10), (1,2,3,4,5), (3,2,2,2,2)) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) # d. jagged python_obj = ((6,7,8,9,10), (1,2,3,4), (3,2,2)) the_frame = h2o.H2OFrame(python_obj=python_obj) #h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) TODO ## 3. list-tuple mixed # a. single column python_obj = ((1,), [2], (3.7,), [8], (9,)) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # b. single column python_obj = [(1,), [2], (3.7,), [8], (9,)] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # c. multiple rows, columns python_obj = ([6,7,8,9,10], (1,2,3,4,5), [3,2,2,2,2]) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) # d. multiple rows, columns python_obj = [(6,7,8,9,10), [1,2,3,4,5], (3,2,2,2,2)] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) # e. jagged python_obj = [(6,7,8,9,10), [1,2,3,4], (3,2,2)] the_frame = h2o.H2OFrame(python_obj=python_obj) # h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) TODO # f. jagged python_obj = ((6,7,8,9,10), [1,2,3,4], (3,2,2)) the_frame = h2o.H2OFrame(python_obj=python_obj)
def to_H2OFrame(ip,port): # Connect to a pre-existing cluster h2o.init(ip,port) # TODO: negative testing ## 1. list # a. single row python_obj = [1, "a", 2.5, "bcd", 0] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=1, cols=5) # b. single column python_obj = [[1], [2], [3.7], [8], [9]] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # c. multiple rows, columns python_obj = [[6,7,8,9,10], [1,2,3,4,5], [3,2,2,2,2]] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) # d. jagged python_obj = [[6,7,8,9,10], [1,2,3,4], [3,2,2]] the_frame = h2o.H2OFrame(python_obj=python_obj) #h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) TODO ## 2. tuple # a. single row python_obj = (1, "a", 2.5, "bcd", 0) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=1, cols=5) # b. single column python_obj = ((1,), (2,), (3.7,), (8,), (9,)) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # c. multiple rows, columns python_obj = ((6,7,8,9,10), (1,2,3,4,5), (3,2,2,2,2)) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) # d. jagged python_obj = ((6,7,8,9,10), (1,2,3,4), (3,2,2)) the_frame = h2o.H2OFrame(python_obj=python_obj) #h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) TODO ## 3. list-tuple mixed # a. single column python_obj = ((1,), [2], (3.7,), [8], (9,)) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # b. single column python_obj = [(1,), [2], (3.7,), [8], (9,)] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # c. multiple rows, columns python_obj = ([6,7,8,9,10], (1,2,3,4,5), [3,2,2,2,2]) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) # d. multiple rows, columns python_obj = [(6,7,8,9,10), [1,2,3,4,5], (3,2,2,2,2)] the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) # e. jagged python_obj = [(6,7,8,9,10), [1,2,3,4], (3,2,2)] the_frame = h2o.H2OFrame(python_obj=python_obj) # h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) TODO # f. jagged python_obj = ((6,7,8,9,10), [1,2,3,4], (3,2,2)) the_frame = h2o.H2OFrame(python_obj=python_obj) # h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) TODO ## 4. dictionary # a. single row python_obj = {"a":1, "b":"a", "c":2.5, "d":"bcd", "e":0} the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=1, cols=5) assert set(the_frame.names()) == set(python_obj.keys()), "H2OFrame header is hosed. Got {0}, but should have got " \ "{1}".format(the_frame.names(), python_obj.keys()) python_obj = {"a":[1], "b":["a"], "c":[2.5], "d":["bcd"], "e":[0]} the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=1, cols=5) assert set(the_frame.names()) == set(python_obj.keys()), "H2OFrame header is hosed. Got {0}, but should have got " \ "{1}".format(the_frame.names(), python_obj.keys()) # b. single column python_obj = {"foo":(1,2,3.7,8,9)} the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) assert set(the_frame.names()) == set(python_obj.keys()), "H2OFrame header is hosed. Got {0}, but should have got " \ "{1}".format(the_frame.names(), python_obj.keys()) # c. multiple rows, columns python_obj = {"foo":[6,7,8,9,10], "bar":(1,2,3,4,5), "baz":(3,2,2,2,2)} the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=3) assert set(the_frame.names()) == set(python_obj.keys()), "H2OFrame header is hosed. Got {0}, but should have got " \ "{1}".format(the_frame.names(), python_obj.keys()) # d. jagged python_obj = {"foo":(6,7), "bar":(1,2,3,4), "baz":(3,2,2)} the_frame = h2o.H2OFrame(python_obj=python_obj) # check_dims_values_jagged() TODO assert set(the_frame.names()) == set(python_obj.keys()), "H2OFrame header is hosed. Got {0}, but should have got " \ "{1}".format(the_frame.names(), python_obj.keys()) ## 5. numpy.ndarray # a. single row python_obj = np.array([1, "a", 2.5, "bcd", 0]) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=1, cols=5) # b. single column python_obj = np.array([[1], [2], [3.7], [8], [9]]) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # c. multiple rows, columns python_obj = np.array([[6,7,8,9,10], [1,2,3,4,5], [3,2,2,2,2]]) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=3, cols=5) # d. jagged python_obj = np.array([[6,7,8,9,10], [1,2,3,4], [3,2,2]]) the_frame = h2o.H2OFrame(python_obj=python_obj) # check_dims_values_jagged() TODO ## 6. pandas.DataFrame # a. single row python_obj = pd.DataFrame({'foo' : pd.Series([1]), 'bar' : pd.Series([6]), 'baz' : pd.Series(["a"]) }) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=1, cols=3) # b. single column python_obj = pd.DataFrame({'foo' : pd.Series([1, 2, 3, 7.8, 9])}) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=1) # c. multiple rows, columns python_obj = pd.DataFrame({'foo' : pd.Series([6,7,8,9,10]), 'bar' : pd.Series([1,2,3,4,5]), 'baz' : pd.Series([3,2,2,2,2])}) the_frame = h2o.H2OFrame(python_obj=python_obj) h2o.check_dims_values(python_obj, the_frame, rows=5, cols=3) # d. jagged python_obj = pd.DataFrame({'foo' : pd.Series([6,7,8]), 'bar' : pd.Series([1,2,3,4,5]), 'baz' : pd.Series([3,2,2,2])}) the_frame = h2o.H2OFrame(python_obj=python_obj)