def downscale_h3(time_win_df, agg_brothers, downscale_size=2, h3_index_col="h3_index"): # tODO: 2nd for loop should be a while with selected res at top # Only with this number of brother the hexagons will be scaled (max = 7) n_min_brothers_to_scale = 5 time_win_h3 = time_win_df.reset_index() time_win_h3["h3_res"] = time_win_h3[h3_index_col].apply( h3.h3_get_resolution) downscale_resulutions = range(time_win_h3["h3_res"].min(), time_win_h3["h3_res"].min() - downscale_size, -1) for child_h3_res_depth, downscale_res in enumerate(downscale_resulutions): print("Auto downscale h3 resolution:", downscale_res) for idx, row in time_win_h3.iterrows(): # Once time_win_h3 indexs get changed during the loop and the time_win_h3.iterrows() # is a copy of the rows, they might not exist if idx not in time_win_h3.index: continue h3idx = row[h3_index_col] cell_res = row["h3_res"] # If its a different res than the one we re trying to downscale, skips if cell_res != downscale_res: continue parent = h3.h3_to_parent(h3idx, cell_res - 1) # finding all the brother cells brother_cells = list(h3.h3_to_children(parent, cell_res)) # dont scale if there is less than X brothers if time_win_h3[h3_index_col].isin( brother_cells).sum() < n_min_brothers_to_scale: continue # finding all the children cells for childh3res in range(1, child_h3_res_depth + 1): brother_cells.extend( list(h3.h3_to_children(parent, cell_res + childh3res))) brothers_df = time_win_h3[time_win_h3[h3_index_col].isin( brother_cells)] agg_result = agg_brothers(brothers_df) if agg_result is False: continue # set the cols to the parent values agg_result[h3_index_col] = parent agg_result["h3_res"] = cell_res - 1 time_win_h3.loc[idx] = agg_result # drop the rest of the brothers time_win_h3.drop([i for i in brothers_df.index if i != idx], inplace=True) return time_win_h3.set_index(h3_index_col)
def occupied_neighbors(hex, density_tgt, density_max, N, hex_density, method='siblings'): """ :param hex: hex to query :param density_tgt: target density for hexs at this resolution :param density_max: maximum density at this resolution :param hex_density: dictionary of densities at each hex :param N: :param method: either siblings or neighbors :return: """ # neigbhors = h3.hex_range(h, 1) #neigbhors = h3.h3_to_children(h3.h3_to_parent(h, resolution - 1), resolution) res = h3.h3_get_resolution(hex) if method == 'siblings': neighbors = h3.h3_to_children(h3.h3_to_parent(hex, res - 1), res) elif method == 'neighbors': neighbors = h3.hex_range(hex, 1) neighbors_above_tgt = 0 for n in neighbors: if n not in hex_density: continue if hex_density[n]['clipped'] >= density_tgt: neighbors_above_tgt += 1 clip = min(density_max, density_tgt * max(1, (neighbors_above_tgt - N + 1))) return clip
def get_parent_and_child_hex_dictionary(self, df, parent_resolution, output_name=None, output_json=False): """ :param df: input geopandas geodataframe :param parent_resolution: the parent h3 resolution :param output_name: json dictionary name :param output_json: boolean, if you want to output to json file format :return: hex dictionary {"parent_hex_id": ["child_hex_id"]} """ hex_dict = defaultdict(list) bbox = box(*df.total_bounds) parent_hexs_list = h3.polyfill(bbox.__geo_interface__, parent_resolution, geo_json_conformant=True) for parent in parent_hexs_list: child_hex = list(h3.h3_to_children(parent, parent_resolution+1)) hex_dict[parent].append(child_hex) if output_json: output = os.path.join(self.output_folder,"json", output_name+".json") with open(output, 'w') as out_json: json.dump(hex_dict, out_json) print("outfile: ", output) return hex_dict
def random_location(candidate_hex_addresses, resolution): root_hex = random.choice(candidate_hex_addresses) root_resolution = h3.h3_get_resolution(root_hex) current_resolution = root_resolution current_cell = root_hex while current_resolution < resolution: # Step up one resolution. current_resolution += 1 # Get all the children of the current cell. children = h3.h3_to_children(current_cell, current_resolution) # Draw a random child and set it to the current cell. current_cell = random.choice(list(children)) return h3.h3_to_geo(current_cell)
def to_children(self) -> List[Tile]: """Maps current tile to children Tile objects Returns ------- List[Tile] List of children Tile objects """ if self.grid_type == "s2": children_ids = s2.s2_to_children(self.tile_id) elif self.grid_type == "h3": children_ids = h3.h3_to_children(self.tile_id) elif self.grid_type in ("bing", "quadtree"): children_ids = quadtree.tile_to_children(self.tile_id) return [self.id_to_tile(cid) for cid in children_ids]
def get_h3_cells(res, extent=None): """Get h3 cells for given resolution Parameters: res (int): h3 resolution extent (list): Extent as array of 2 lon lat pairs to get raster values for Returns: Pandas dataframe """ if extent: set_hex = list(h3.polyfill_geojson(extent, res=res)) else: set_hex_0 = list(h3.get_res0_indexes()) set_hex = [] if res == 0: set_hex = set_hex_0 else: for i in set_hex_0: set_hex.extend(list(h3.h3_to_children(i, res))) df = pd.DataFrame({"cell_id": set_hex}) return df
def create_h3_geom_cells_global(resolutions, table, export_type, db_engine=''): """Create geometry for h3 cells globally for given resolutions Parameters: db_engine (sqlalchemy.engine): sqlalchemy database engine resolutions(array): array of integer h3 resolution levels table(string): table name for postgres database export_type(string): where to export 'geojson' or 'postgres' Returns: none """ for res in resolutions: set_hex_0 = list(h3.get_res0_indexes()) set_hex = [] if res == 0: set_hex = set_hex_0 else: for i in set_hex_0: set_hex.extend(list(h3.h3_to_children(i, res))) if export_type == 'postgres': gdf = pd.GeoDataFrame({"cell_id": set_hex}) gdf['geometry'] = gdf["cell_id"].apply(lambda x:(Polygon(h3.h3_to_geo_boundary(x, geo_json=True)).wkb)) print('finish caclulating geometry {} {}'.format(res, time.asctime(time.localtime(time.time())))) gdf.to_postgis(table + str(res), db_engine, if_exists='replace') print('finish import to db {} {}'.format(res, time.asctime(time.localtime(time.time())))) elif export_type == 'geojson': transformer = Transformer.from_crs("epsg:4326", 'proj=isea') gdf = gpd.GeoDataFrame({"cell_id": set_hex}) gdf['geometry'] = gdf.cell_id.apply(lambda x: Polygon(h3.h3_to_geo_boundary(x, geo_json=True))) print('finish caclulating geometry {} {}'.format(res, time.asctime(time.localtime(time.time())))) gdf['area'] = gdf.geometry.apply(lambda x: transform(transformer.transform, x).area) gdf.to_file("{}{}.geojson".format(table, res), driver='GeoJSON') print('finish import to geojson {} {}'.format(res, time.asctime(time.localtime(time.time()))))
def test_h3_to_children(self): test_hexagon = '8828308281fffff' children = h3.h3_to_children(test_hexagon, 9) self.assertEqual(len(children), 7, 'got all 7 children back')
def sample_neighbor(hotspots, density_tgt, density_max, R, N): # ============================================================== # Part 1, find hexs and density of hexs containing interactive # hotspots at target resolution # ============================================================== # determine density of occupied "tgt_resolution" hexs. This sets our initial conditions. I also track "actual" vs # clipped density to find discrepancies #hex_density will be keys of hexs (all resolutions) with a value of dict(clipped=0, actual=0) hex_density = dict() interactive = 0 for h in hotspots: if is_interactive(h): hex = h3.h3_to_parent(h['location'], R) interactive += 1 # initialize the hex if not in dictionary if hex not in hex_density: hex_density[hex] = dict(clipped=0, actual=0, unclipped=0) hex_density[hex]['clipped'] += 1 hex_density[hex]['actual'] += 1 hex_density[hex]['unclipped'] += 1 for h in hex_density.keys(): clip = occupied_neighbors(h, density_tgt, density_max, N, hex_density, method='neighbors') hex_density[h]['clipped'] = min(hex_density[h]['clipped'], clip) hex_density[h]['limit'] = clip print(f"{len(hotspots)} hotspots") print(f"{len(hex_density)} unique res {R} hexs") print(f"{lone_wolfs} lone wolfs") print(f"{interactive} interactive hotspots") #build a set of R resolution hexs, occupied child hexs are how we build occupied hexs for parent levels occupied_higher_res = set(hex_density.keys()) # ============================================================== # Part 2, go from high to low res, clipping density and determining # densities of parent hexs # ============================================================== # iterate through resultion from just above target to 1 clipping child densities and calculating appropriate hex # densities at "resolution" for resolution in range(R - 1, 0, -1): # hold set of hex's to evaluate occupied_hexs = set( []) # key = parent hex, values = list of child hexs # density target and limit at child's resolution. This is simply scaled up by increased area density_res_tgt = density_tgt * 7**(R - resolution) density_res_max = density_max * 7**(R - resolution) # 1. find all occupied hexs at this resolution based on child hexs for h in occupied_higher_res: occupied_hexs.add(h3.h3_to_parent(h, resolution)) for h in occupied_hexs: children = h3.h3_to_children(h, resolution + 1) # calculate density of this hex by summing the clipped density of its children hex_raw_density = 0 hex_unclipped_density = 0 for c in children: if c in hex_density: hex_raw_density += hex_density[c]['clipped'] hex_unclipped_density += hex_density[c]['actual'] hex_density[h] = dict(clipped=hex_raw_density, actual=hex_unclipped_density, unclipped=hex_raw_density) # now that we have unclipped densities of each occupied hex at this resolution, iterate through all occupied # hexs again and apply clipping by looking at neighbors: for h in occupied_hexs: #neigbhors = h3.hex_range(h, 1) #neigbhors = h3.h3_to_children(h3.h3_to_parent(h, resolution - 1), resolution) clip = occupied_neighbors(h, density_res_tgt, density_res_max, N, hex_density, method='neighbors') hex_density[h]['clipped'] = min(hex_density[h]['clipped'], clip) hex_density[h]['limit'] = clip occupied_higher_res = list(occupied_hexs) print( f"total of {len(occupied_hexs)} occupied hexes at resolution {resolution}" ) # occupied hex's at this resolution are child hexs in next resolution child_hexs = occupied_hexs # ============================================================== # Part 3, print / store analysis # ============================================================== # occupied_hex's is now the top level hex evaluated. Start here for descending to target a hotspot top_count = 0 for h in occupied_hexs: #print(f"hex {h} has density {hex_density[h]}") top_count += hex_density[h]['clipped'] print(f"total density of all top level hexs = {top_count}") # for k in hex_density.keys(): # hex_density[k]['border'] = h3.h3_to_geo_boundary(k, False) interactive_hspots = 0 with open(f'hex_occupancy_R{R}_N{N}_tgt{density_tgt}_max{density_max}.csv', 'w', newline='') as csvfile: hex_writer = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) hex_writer.writerow([ 'hex', 'resolution', 'density_clipped', 'density_actual', 'density_limit' ]) for k in hex_density: hex_writer.writerow([ k, h3.h3_get_resolution(k), hex_density[k]['clipped'], hex_density[k]['actual'], hex_density[k]['limit'] ]) with open( f'hotspot_RewardScale_R{R}_N{N}_tgt{density_tgt}_max{density_max}.csv', 'w', newline='') as csvfile: hspot_writer = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) hspot_writer.writerow( ['address', 'name', 'city', 'state', 'reward_scale']) # iterate through all interactive hotspots and evaluate probability of targeting. this will be outputted to CSV for hspot in hotspots: # start at top level and iterate through determining odds of selection if not is_interactive(hspot): continue interactive_hspots += 1 scale = 1 probability = 1 #for res in range(1, R+1): for res in range(R, 0, -1): hex = h3.h3_to_parent(hspot['location'], res) scale_orig = scale scale *= hex_density[hex]['clipped'] / hex_density[hex][ 'unclipped'] if hspot['name'] == 'daring-carmine-penguin': print( f"{hex} h3res:{res} has density clipped/unclipped of {hex_density[hex]['clipped']:3d}/{hex_density[hex]['unclipped']:3d}, scale reduced: {scale_orig:.3f} to {scale:.3f}" ) sibling_total = hex_density[hex]['clipped'] sibling_unclipped = hex_density[hex]['actual'] hspot_writer.writerow([ hspot['address'], hspot['name'], hspot['geocode']['short_city'], hspot['geocode']['short_state'], f"{scale:.5f}" ]) # print(f"hotspot {hspot['name']:30} has {sibling_unclipped} hotspots in res8 cell, probability {probability*100:.8f}%") print(f"total of {interactive_hspots} interactive hotspots")