예제 #1
0
def sample_navigable_point(sim: Simulator,
                           floor_coord: List[float],
                           max_dist: float = 0.3,
                           max_tries: float = 100):
    """ Get sample of point only on ground """
    for _ in range(max_tries):
        source_position = sim.sample_navigable_point()

        dist = source_position[1] - floor_coord
        if np.min(np.abs(dist)) < max_dist:  # TODO Fix points on ceileing
            return source_position
    return None
예제 #2
0
def get_topdown_map_from_sim(
    sim: Simulator,
    map_resolution: int = 1024,
    draw_border: bool = True,
    meters_per_pixel: Optional[float] = None,
    agent_id: int = 0,
) -> np.ndarray:
    r"""Wrapper around :py:`get_topdown_map` that retrieves that pathfinder and heigh from the current simulator

    :param sim: Simulator instance.
    :param agent_id: The agent ID
    """
    return get_topdown_map(
        sim.pathfinder,
        sim.get_agent(agent_id).state.position[1],
        map_resolution,
        draw_border,
        meters_per_pixel,
    )
def generate_objectnav_task_category_id(sim: Simulator, task_category):
    scene = sim.semantic_annotations()
    target = dict()
    for obj in scene.objects:
        if obj is not None:
            # print(
            #     f"Object id:{obj.id}, category:{obj.category.name()}, Index:{obj.category.index()}"
            #     f" center:{obj.aabb.center}, dims:{obj.aabb.sizes}"
            # )
            if obj.category.name() in task_category.keys():
                if obj.category.index() in target:
                    target[obj.category.index()].append(obj)
                else:
                    target[obj.category.index()] = [obj]
    task_category_id = task_category
    for i in target:
        task_category_id[target[i]
                         [0].category.name()] = target[i][0].category.index()
    # print(task_category_id)
    return task_category_id
예제 #4
0
def generate_pointnav_episode(
    sim: Simulator,
    target: List = None,  # Specify target Coord
    num_episodes: int = -1,
    is_gen_shortest_path: bool = True,
    shortest_path_success_distance: float = 0.2,
    shortest_path_max_steps: int = 500,
    closest_dist_limit: float = 1,
    furthest_dist_limit: float = 30,
    geodesic_to_euclid_min_ratio: float = 1.1,
    geodesic_min_ratio_prob: float = 0.01,
    number_retries_per_target: int = 50,
    floor_coord: List[float] = None,
    max_samples_multi_target: int = 40,
    spiral_coord: np.ndarray = None,
) -> NavigationEpisode:
    r"""Generator function that generates PointGoal navigation episodes.

    An episode is trivial if there is an obstacle-free, straight line between
    the start and goal positions. A good measure of the navigation
    complexity of an episode is the ratio of
    geodesic shortest path position to Euclidean distance between start and
    goal positions to the corresponding Euclidean distance.
    If the ratio is nearly 1, it indicates there are few obstacles, and the
    episode is easy; if the ratio is larger than 1, the
    episode is difficult because strategic navigation is required.
    To keep the navigation complexity of the precomputed episodes reasonably
    high, we perform aggressive rejection sampling for episodes with the above
    ratio falling in the range [1, 1.1].
    Following this, there is a significant decrease in the number of
    straight-line episodes.


    :param sim: simulator with loaded scene for generation.
    :param num_episodes: number of episodes needed to generate
    :param is_gen_shortest_path: option to generate shortest paths
    :param shortest_path_success_distance: success distance when agent should
    stop during shortest path generation
    :param shortest_path_max_steps maximum number of steps shortest path
    expected to be
    :param closest_dist_limit episode geodesic distance lowest limit
    :param furthest_dist_limit episode geodesic distance highest limit
    :param geodesic_to_euclid_min_ratio geodesic shortest path to Euclid
    distance ratio upper limit till aggressive sampling is applied.
    :return: navigation episode that satisfy specified distribution for
    currently loaded into simulator scene.
    """
    episode_count = 0
    m_t = None
    target_position = None
    floor_coord = np.array(floor_coord)
    target_idx = 0
    error_code = []

    while episode_count < num_episodes or num_episodes < 0:
        if target_position is None:
            target_position = sim.sample_navigable_point() if target is None \
                else target

        if sim.island_radius(target_position) < ISLAND_RADIUS_LIMIT and \
            target is None:
            continue

        if m_t is not None:
            target_idx = np.random.randint(0, len(m_t))
            target_position = m_t[target_idx]

        found_episode = False
        episode = None
        for retry in range(number_retries_per_target):
            source_position = sample_navigable_point(sim, floor_coord)

            min_r = 0 if np.random.rand() < geodesic_min_ratio_prob else \
                geodesic_to_euclid_min_ratio

            is_compatible, dist = is_compatible_episode(
                source_position,
                target_position,
                sim,
                near_dist=closest_dist_limit,
                far_dist=furthest_dist_limit,
                geodesic_to_euclid_ratio=min_r,
            )

            if is_compatible:
                angle = np.random.uniform(0, 2 * np.pi)
                source_rotation = [0, np.sin(angle / 2), 0, np.cos(angle / 2)]

                shortest_paths = None
                if is_gen_shortest_path:
                    shortest_paths = [
                        get_action_shortest_path(
                            sim,
                            source_position=source_position,
                            source_rotation=source_rotation,
                            goal_position=target_position,
                            success_distance=shortest_path_success_distance,
                            max_episode_steps=shortest_path_max_steps,
                        )
                    ]

                episode = _create_episode(
                    episode_id=episode_count,
                    scene_id=sim.config.SCENE,
                    start_position=source_position,
                    start_rotation=source_rotation,
                    target_position=target_position,
                    shortest_paths=shortest_paths,
                    radius=shortest_path_success_distance,
                    info={"geodesic_distance": dist},
                    multi_target=m_t)
                episode.target_idx = target_idx
                episode.error_code = error_code

                episode_count += 1
                found_episode = True
                break
            else:
                error_code.append(dist)

        if not found_episode and m_t is None:
            print("Can't reach actual object coordinate, try to find "
                  "shortest reachable points")

            min_dist = 0.2

            # Get floor height of object
            floor_h = sample_navigable_point(sim, floor_coord)[1]

            # Generate points on a spiral
            spiral_pts = spiral_coord + np.array([target[0], target[2]])
            n_pts = []
            for pt in spiral_pts:
                npt = [pt[0], floor_h, pt[1]]
                is_nav = sim.is_navigable(npt)
                if is_nav:
                    n_pts.append(npt)

            n_pts = np.array(n_pts)

            eucl_distance = \
                np.linalg.norm(n_pts - np.array(target), axis=1)
            sortidx = np.argsort(eucl_distance)
            n_pts = n_pts[sortidx]

            m_t = []
            first_dist = None
            while len(m_t) < NO_MULTI_GOALS and len(n_pts) > 0:

                # check reachebilty
                reachable = False
                while not reachable:
                    for _ in range(10):
                        check_p = sample_navigable_point(sim, floor_coord)
                        d_sep = sim.geodesic_distance(n_pts[0], check_p)
                        if d_sep != np.inf:
                            reachable = True
                    if not reachable:
                        n_pts = n_pts[1:]

                if first_dist is None:
                    first_dist = np.linalg.norm(target - n_pts[0]) + min_dist
                else:
                    if np.linalg.norm(target - n_pts[0]) > first_dist:
                        break

                m_t.append(n_pts[0])
                n_pts = n_pts[1:]

                n_cnt = len(n_pts)
                m_cnt = len(m_t)
                mtt = np.array(m_t)
                d = np.linalg.norm(
                    np.repeat(np.expand_dims(n_pts, 1), m_cnt, 1).reshape(
                        -1, 3) -
                    np.repeat(np.expand_dims(mtt, 0), n_cnt, 0).reshape(-1, 3),
                    axis=1)
                select = (d.reshape(
                    n_cnt,
                    m_cnt,
                ) > 1).all(axis=1)
                n_pts = n_pts[select]

            m_t = np.array(m_t)
            print(m_t)
            assert len(m_t) > 0, "Still no targets"

            continue

        yield episode
예제 #5
0
def generate_pointnav_episode(
    sim: Simulator,
    num_episodes: int = -1,
    is_gen_shortest_path: bool = True,
    shortest_path_success_distance: float = 0.2,
    shortest_path_max_steps: int = 500,
    closest_dist_limit: float = 1,
    furthest_dist_limit: float = 30,
    geodesic_to_euclid_min_ratio: float = 1.1,
    number_retries_per_target: int = 10,
) -> NavigationEpisode:
    r"""Generator function that generates PointGoal navigation episodes.

    An episode is trivial if there is an obstacle-free, straight line between
    the start and goal positions. A good measure of the navigation
    complexity of an episode is the ratio of
    geodesic shortest path position to Euclidean distance between start and
    goal positions to the corresponding Euclidean distance.
    If the ratio is nearly 1, it indicates there are few obstacles, and the
    episode is easy; if the ratio is larger than 1, the
    episode is difficult because strategic navigation is required.
    To keep the navigation complexity of the precomputed episodes reasonably
    high, we perform aggressive rejection sampling for episodes with the above
    ratio falling in the range [1, 1.1].
    Following this, there is a significant decrease in the number of
    straight-line episodes.


    :param sim: simulator with loaded scene for generation.
    :param num_episodes: number of episodes needed to generate
    :param is_gen_shortest_path: option to generate shortest paths
    :param shortest_path_success_distance: success distance when agent should
    stop during shortest path generation
    :param shortest_path_max_steps maximum number of steps shortest path
    expected to be
    :param closest_dist_limit episode geodesic distance lowest limit
    :param furthest_dist_limit episode geodesic distance highest limit
    :param geodesic_to_euclid_min_ratio geodesic shortest path to Euclid
    distance ratio upper limit till aggressive sampling is applied.
    :return: navigation episode that satisfy specified distribution for
    currently loaded into simulator scene.
    """
    episode_count = 0
    while episode_count < num_episodes or num_episodes < 0:
        target_position = sim.sample_navigable_point()

        if sim.island_radius(target_position) < ISLAND_RADIUS_LIMIT:
            continue

        for retry in range(number_retries_per_target):
            source_position = sim.sample_navigable_point()

            is_compatible, dist = is_compatible_episode(
                source_position,
                target_position,
                sim,
                near_dist=closest_dist_limit,
                far_dist=furthest_dist_limit,
                geodesic_to_euclid_ratio=geodesic_to_euclid_min_ratio,
            )
        if is_compatible:
            angle = np.random.uniform(0, 2 * np.pi)
            source_rotation = [0, np.sin(angle / 2), 0, np.cos(angle / 2)]

            shortest_paths = None
            if is_gen_shortest_path:
                shortest_paths = [
                    get_action_shortest_path(
                        sim,
                        source_position=source_position,
                        source_rotation=source_rotation,
                        goal_position=target_position,
                        success_distance=shortest_path_success_distance,
                        max_episode_steps=shortest_path_max_steps,
                    )
                ]

            episode = _create_episode(
                episode_id=episode_count,
                scene_id=sim.config.SCENE,
                start_position=source_position,
                start_rotation=source_rotation,
                target_position=target_position,
                shortest_paths=shortest_paths,
                radius=shortest_path_success_distance,
                info={"geodesic_distance": dist},
            )

            episode_count += 1
            yield episode
예제 #6
0
def get_topdown_map(
    sim: Simulator,
    map_resolution: Tuple[int, int] = (1250, 1250),
    num_samples: int = 20000,
    draw_border: bool = True,
) -> np.ndarray:
    r"""Return a top-down occupancy map for a sim. Note, this only returns valid
    values for whatever floor the agent is currently on.

    Args:
        sim: The simulator.
        map_resolution: The resolution of map which will be computed and
            returned.
        num_samples: The number of random navigable points which will be
            initially
            sampled. For large environments it may need to be increased.
        draw_border: Whether to outline the border of the occupied spaces.

    Returns:
        Image containing 0 if occupied, 1 if unoccupied, and 2 if border (if
        the flag is set).
    """
    top_down_map = np.zeros(map_resolution, dtype=np.uint8)
    border_padding = 3

    start_height = sim.get_agent_state().position[1]

    # Use sampling to find the extrema points that might be navigable.
    range_x = (map_resolution[0], 0)
    range_y = (map_resolution[1], 0)
    for _ in range(num_samples):
        point = sim.sample_navigable_point()
        # Check if on same level as original
        if np.abs(start_height - point[1]) > 0.5:
            continue
        g_x, g_y = to_grid(point[0], point[2], COORDINATE_MIN, COORDINATE_MAX,
                           map_resolution)
        range_x = (min(range_x[0], g_x), max(range_x[1], g_x))
        range_y = (min(range_y[0], g_y), max(range_y[1], g_y))

    # Pad the range just in case not enough points were sampled to get the true
    # extrema.
    padding = int(np.ceil(map_resolution[0] / 125))
    range_x = (
        max(range_x[0] - padding, 0),
        min(range_x[-1] + padding + 1, top_down_map.shape[0]),
    )
    range_y = (
        max(range_y[0] - padding, 0),
        min(range_y[-1] + padding + 1, top_down_map.shape[1]),
    )

    # Search over grid for valid points.
    for ii in range(range_x[0], range_x[1]):
        for jj in range(range_y[0], range_y[1]):
            realworld_x, realworld_y = from_grid(ii, jj, COORDINATE_MIN,
                                                 COORDINATE_MAX,
                                                 map_resolution)
            valid_point = sim.is_navigable(
                [realworld_x, start_height, realworld_y])
            top_down_map[ii, jj] = (MAP_VALID_POINT
                                    if valid_point else MAP_INVALID_POINT)

    # Draw border if necessary
    if draw_border:
        # Recompute range in case padding added any more values.
        range_x = np.where(np.any(top_down_map, axis=1))[0]
        range_y = np.where(np.any(top_down_map, axis=0))[0]
        range_x = (
            max(range_x[0] - border_padding, 0),
            min(range_x[-1] + border_padding + 1, top_down_map.shape[0]),
        )
        range_y = (
            max(range_y[0] - border_padding, 0),
            min(range_y[-1] + border_padding + 1, top_down_map.shape[1]),
        )

        _outline_border(top_down_map[range_x[0]:range_x[1],
                                     range_y[0]:range_y[1]])
    return top_down_map
def generate_objectnav_goals_by_category(sim: Simulator,
                                         task_category) -> ObjectGoal:

    scene = sim.semantic_annotations()
    target = dict()
    for obj in scene.objects:
        if obj is not None:
            # print(
            #     f"Object id:{obj.id}, category:{obj.category.name()}, Index:{obj.category.index()}"
            #     f" center:{obj.aabb.center}, dims:{obj.aabb.sizes}"
            # )
            if obj.category.name() in task_category.keys():
                if obj.category.index() in target:
                    target[obj.category.index()].append(obj)
                else:
                    target[obj.category.index()] = [obj]

    for i in target:
        # print("target episode len:", len(target[i]))
        object_category = target[i][0].category.name()
        # print("object_category :", object_category)
        str_goal = f"{os.path.basename(sim.config.SCENE)}_{object_category}"
        # print(str_goal)

        goals_by = []
        for j in range(len(target[i])):

            object_view_list = []
            for x in np.arange(
                    target[i][j].aabb.center[0] -
                    target[i][j].aabb.sizes[0] / 2.0,
                    target[i][j].aabb.center[0] +
                    target[i][j].aabb.sizes[0] / 2.0, 0.1):
                for y in np.arange(
                        target[i][j].aabb.center[2] -
                        target[i][j].aabb.sizes[2] / 2.0,
                        target[i][j].aabb.center[2] +
                        target[i][j].aabb.sizes[2] / 2.0, 0.1):
                    # print("x, y: ", type(x)) # np.float6
                    # print("x, y: ", type(target[i][j].aabb.center[1])) # np.floa32 报错
                    object_view_list.append(
                        ObjectViewLocation(
                            agent_state=AgentState(position=[
                                x, target[i][j].aabb.center[1].astype(
                                    np.float64), y
                            ]),
                            iou=0.0,
                        ))
            # print(type(object_view_list))
            goal_by_object = ObjectGoal(
                position=target[i][j].aabb.center,
                radius=0.5,
                object_id=int(re.findall(r"\d+", target[i][j].id)[0]),
                object_name=target[i][j].id,
                object_category=object_category,
                view_points=object_view_list,
            )

            goals_by.append(goal_by_object)

        yield str_goal, goals_by
def generate_objectnav_episode(
    sim: Simulator,
    task_category,
    num_episodes: int = -1,
    is_gen_shortest_path: bool = True,
    shortest_path_success_distance: float = 0.2,
    shortest_path_max_steps: int = 500,
    closest_dist_limit: float = 1,
    furthest_dist_limit: float = 10,
    geodesic_to_euclid_min_ratio: float = 1.1,
    number_retries_per_target: int = 100,
) -> ObjectGoalNavEpisode:
    r"""Generator function that generates PointGoal navigation episodes.

    An episode is trivial if there is an obstacle-free, straight line between
    the start and goal positions. A good measure of the navigation
    complexity of an episode is the ratio of
    geodesic shortest path position to Euclidean distance between start and
    goal positions to the corresponding Euclidean distance.
    If the ratio is nearly 1, it indicates there are few obstacles, and the
    episode is easy; if the ratio is larger than 1, the
    episode is difficult because strategic navigation is required.
    To keep the navigation complexity of the precomputed episodes reasonably
    high, we perform aggressive rejection sampling for episodes with the above
    ratio falling in the range [1, 1.1].
    Following this, there is a significant decrease in the number of
    straight-line episodes.


    :param sim: simulator with loaded scene for generation.
    :param num_episodes: number of episodes needed to generate
    :param is_gen_shortest_path: option to generate shortest paths
    :param shortest_path_success_distance: success distance when agent should
    stop during shortest path generation
    :param shortest_path_max_steps maximum number of steps shortest path
    expected to be
    :param closest_dist_limit episode geodesic distance lowest limit
    :param furthest_dist_limit episode geodesic distance highest limit
    :param geodesic_to_euclid_min_ratio geodesic shortest path to Euclid
    distance ratio upper limit till aggressive sampling is applied.
    :return: navigation episode that satisfy specified distribution for
    currently loaded into simulator scene.
    """
    scene = sim.semantic_annotations()
    # print("scene object len: ", len(scene.objects))
    target = dict()
    for obj in scene.objects:
        if obj is not None:
            # print(
            #     f"Object id:{obj.id}, category:{obj.category.name()}, Index:{obj.category.index()}"
            #     f" center:{obj.aabb.center}, dims:{obj.aabb.sizes}"
            # )
            if obj.category.name() in task_category.keys():
                if obj.category.index() in target:
                    target[obj.category.index()].append(obj)
                else:
                    target[obj.category.index()] = [obj]
    # print("target len:", len(target))
    for i in target:
        episode_count = 0
        while episode_count < num_episodes or num_episodes < 0:
            # print("target episode len:", len(target[i]))
            object_category = target[i][0].category.name()
            # print("object_category :", object_category)

            target_position = []
            target_id = []
            for j in range(len(target[i])):
                target_position.append(target[i][j].aabb.center.tolist())
                target_id.append(target[i][j].id)

            shortest_paths = None
            for retry in range(number_retries_per_target):
                source_position = sim.sample_navigable_point()
                # source_position[1] = High

                is_compatible, dist, euclid, closest_goal_object_id, target_position_episode = is_compatible_episode(
                    source_position,
                    target_position,
                    target_id,
                    sim,
                    near_dist=closest_dist_limit,
                    far_dist=furthest_dist_limit,
                    geodesic_to_euclid_ratio=geodesic_to_euclid_min_ratio,
                )

                if is_compatible and sim.geodesic_distance(
                        source_position, target_position) != np.inf:
                    # print("source: ", source_position)
                    # print("target_position: ", target_position)
                    # print("warning: ", sim.geodesic_distance(source_position, target_position))
                    angle = np.random.uniform(0, 2 * np.pi)
                    source_rotation = [
                        0, np.sin(angle / 2), 0,
                        np.cos(angle / 2)
                    ]
                    if is_gen_shortest_path:
                        try:
                            shortest_paths = [
                                get_action_shortest_path(
                                    sim,
                                    source_position=source_position,
                                    source_rotation=source_rotation,
                                    goal_position=target_position_episode,
                                    success_distance=
                                    shortest_path_success_distance,
                                    max_episode_steps=shortest_path_max_steps,
                                )
                            ]
                        # Throws an error when it can't find a path
                        except GreedyFollowerError:
                            continue

                    if len(shortest_paths) < shortest_path_max_steps - 1:
                        # print("Found! ", object_category)
                        break
            # print("episode_count: ", episode_count)
            if is_compatible and sim.geodesic_distance(
                    source_position, target_position) != np.inf and len(
                        shortest_paths) < shortest_path_max_steps - 1:
                # angle = np.random.uniform(0, 2 * np.pi)
                # source_rotation = [0, np.sin(angle / 2), 0, np.cos(angle / 2)]

                # shortest_paths = None
                # if is_gen_shortest_path:
                #     try:
                #         shortest_paths = [
                #             get_action_shortest_path(
                #                 sim,
                #                 source_position=source_position,
                #                 source_rotation=source_rotation,
                #                 goal_position=target_position_episode,
                #                 success_distance=shortest_path_success_distance,
                #                 max_episode_steps=shortest_path_max_steps,
                #             )
                #         ]
                #     # Throws an error when it can't find a path
                #     except GreedyFollowerError:
                #         continue

                episode = _create_episode(
                    episode_id=episode_count,
                    scene_id=sim.config.SCENE,
                    start_position=source_position,
                    start_rotation=source_rotation,
                    target_position=target_position,
                    object_category=object_category,
                    shortest_paths=shortest_paths,
                    radius=shortest_path_success_distance,
                    info={
                        "geodesic_distance": dist,
                        "euclidean_distance": euclid,
                        "closest_goal_object_id": closest_goal_object_id
                    },
                )
                # print("source_position: ", source_position)
                # print("episode finish!")
                episode_count += 1
                if episode_count > num_episodes:
                    return

                yield episode

            else:
                break