예제 #1
0
def construct_envs(config: Config, env_class: Type[Union[Env,
                                                         RLEnv]]) -> VectorEnv:
    r"""Create VectorEnv object with specified config and env class type.
    To allow better performance, dataset are split into small ones for
    each individual env, grouped by scenes.

    Args:
        config: configs that contain num_processes as well as information
        necessary to create individual environments.
        env_class: class type of the envs to be created.

    Returns:
        VectorEnv object created according to specification.
    """

    num_processes = config.NUM_PROCESSES
    configs = []
    env_classes = [env_class for _ in range(num_processes)]
    dataset = make_dataset(config.TASK_CONFIG.DATASET.TYPE,
                           **{'filter_fn': filter_fn})
    scenes = config.TASK_CONFIG.DATASET.CONTENT_SCENES
    if "*" in config.TASK_CONFIG.DATASET.CONTENT_SCENES:
        scenes = dataset.get_scenes_to_load(config.TASK_CONFIG.DATASET)

    if num_processes > 1:
        if len(scenes) == 0:
            raise RuntimeError(
                "No scenes to load, multiple process logic relies on being able to split scenes uniquely between processes"
            )

        if len(scenes) < num_processes:
            raise RuntimeError("reduce the number of processes as there "
                               "aren't enough number of scenes")

        random.shuffle(scenes)

    scene_splits = [[] for _ in range(num_processes)]
    for idx, scene in enumerate(scenes):
        scene_splits[idx % len(scene_splits)].append(scene)
    print('Total Process : %d ' % num_processes)
    for i, s in enumerate(scene_splits):
        print('proc %d :' % i, s)
    assert sum(map(len, scene_splits)) == len(scenes)

    for i in range(num_processes):
        proc_config = config.clone()
        proc_config.defrost()

        task_config = proc_config.TASK_CONFIG
        if len(scenes) > 0:
            task_config.DATASET.CONTENT_SCENES = scene_splits[i]

        task_config.TASK.CUSTOM_OBJECT_GOAL_SENSOR = habitat.Config()
        task_config.TASK.CUSTOM_OBJECT_GOAL_SENSOR.TYPE = 'CustomObjectSensor'
        task_config.TASK.CUSTOM_OBJECT_GOAL_SENSOR.GOAL_SPEC = "OBJECT_IMG"

        task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = (
            config.SIMULATOR_GPU_ID)

        task_config.SIMULATOR.AGENT_0.SENSORS = config.SENSORS

        proc_config.freeze()
        configs.append(proc_config)

    envs = habitat.VectorEnv(make_env_fn=make_env_fn,
                             env_fn_args=tuple(
                                 tuple(
                                     zip(configs, env_classes,
                                         range(num_processes),
                                         [{
                                             'filter_fn': filter_fn
                                         }] * num_processes))))
    return envs
예제 #2
0
def construct_envs(
    config: Config,
    env_class: Type[Union[Env, RLEnv]],
    workers_ignore_signals: bool = False,
) -> VectorEnv:
    r"""Create VectorEnv object with specified config and env class type.
    To allow better performance, dataset are split into small ones for
    each individual env, grouped by scenes.

    :param config: configs that contain num_processes as well as information
    :param necessary to create individual environments.
    :param env_class: class type of the envs to be created.
    :param workers_ignore_signals: Passed to :ref:`habitat.VectorEnv`'s constructor

    :return: VectorEnv object created according to specification.
    """

    num_processes = config.NUM_PROCESSES
    configs = []
    env_classes = [env_class for _ in range(num_processes)]
    dataset = make_dataset(config.TASK_CONFIG.DATASET.TYPE)
    scenes = config.TASK_CONFIG.DATASET.CONTENT_SCENES
    if "*" in config.TASK_CONFIG.DATASET.CONTENT_SCENES:
        scenes = dataset.get_scenes_to_load(config.TASK_CONFIG.DATASET)

    if num_processes > 1:
        if len(scenes) == 0:
            raise RuntimeError(
                "No scenes to load, multiple process logic relies on being able to split scenes uniquely between processes"
            )

        if len(scenes) < num_processes:
            raise RuntimeError("reduce the number of processes as there "
                               "aren't enough number of scenes")

        random.shuffle(scenes)

    scene_splits: List[List[str]] = [[] for _ in range(num_processes)]
    for idx, scene in enumerate(scenes):
        scene_splits[idx % len(scene_splits)].append(scene)

    assert sum(map(len, scene_splits)) == len(scenes)

    for i in range(num_processes):
        proc_config = config.clone()
        proc_config.defrost()

        task_config = proc_config.TASK_CONFIG
        task_config.SEED = task_config.SEED + i
        if len(scenes) > 0:
            task_config.DATASET.CONTENT_SCENES = scene_splits[i]

        task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = (
            config.SIMULATOR_GPU_ID)

        task_config.SIMULATOR.AGENT_0.SENSORS = config.SENSORS

        proc_config.freeze()
        configs.append(proc_config)

    envs = habitat.VectorEnv(
        make_env_fn=make_env_fn,
        env_fn_args=tuple(zip(configs, env_classes)),
        workers_ignore_signals=workers_ignore_signals,
    )
    return envs
예제 #3
0
def construct_envs(config: Config, env_class: Type[Union[Env,
                                                         RLEnv]]) -> VectorEnv:
    r"""Create VectorEnv object with specified config and env class type.
    To allow better performance, dataset are split into small ones for
    each individual env, grouped by scenes.

    Args:
        config: configs that contain num_processes as well as information
        necessary to create individual environments.
        env_class: class type of the envs to be created.

    Returns:
        VectorEnv object created according to specification.
    """

    num_processes = config.NUM_PROCESSES
    configs = []
    env_classes = [env_class for _ in range(num_processes)]
    dataset = make_dataset(config.TASK_CONFIG.DATASET.TYPE)
    scenes = dataset.get_scenes_to_load(config.TASK_CONFIG.DATASET)

    if len(scenes) > 0:
        random.shuffle(scenes)

        if config.MULTIPLY_SCENES:
            if len(scenes) < num_processes:
                unique_scenes = scenes
                scenes = []
                while len(scenes) < num_processes:
                    scenes += unique_scenes
        else:
            assert len(scenes) >= num_processes, (
                "reduce the number of processes as there "
                "aren't enough number of scenes")

    scene_splits = [[] for _ in range(num_processes)]
    for idx, scene in enumerate(scenes):
        scene_splits[idx % len(scene_splits)].append(scene)

    assert sum(map(len, scene_splits)) == len(scenes)

    for i in range(num_processes):

        task_config = config.TASK_CONFIG.clone()
        task_config.defrost()
        if len(scenes) > 0:
            task_config.DATASET.CONTENT_SCENES = scene_splits[i]

        task_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = (
            config.SIMULATOR_GPU_ID)

        task_config.SIMULATOR.AGENT_0.SENSORS = config.SENSORS
        task_config.freeze()

        config.defrost()
        config.TASK_CONFIG = task_config
        config.freeze()
        configs.append(config.clone())

    envs = habitat.VectorEnv(
        make_env_fn=make_env_fn,
        env_fn_args=tuple(
            tuple(zip(configs, env_classes, range(num_processes)))),
    )
    return envs
예제 #4
0
def construct_envs(config: Config, env_class: Type) -> VectorEnv:
    r"""
    Create VectorEnv object with specified config and env class type.
    To allow better performance, dataset are split into small ones for
    each individual env, grouped by scenes.
    Args:
        config: configs that contain num_processes as well as information
        necessary to create individual environments.
        env_class: class type of the envs to be created.

    Returns:
        VectorEnv object created according to specification.
    """
    trainer_config = config.TRAINER.RL.PPO
    rl_env_config = config.TRAINER.RL
    task_config = config.TASK_CONFIG  # excluding trainer-specific configs
    env_configs, rl_env_configs = [], []
    env_classes = [env_class for _ in range(trainer_config.num_processes)]
    dataset = make_dataset(task_config.DATASET.TYPE)
    scenes = dataset.get_scenes_to_load(task_config.DATASET)

    if len(scenes) > 0:
        random.shuffle(scenes)

        assert len(scenes) >= trainer_config.num_processes, (
            "reduce the number of processes as there "
            "aren't enough number of scenes")

    scene_splits = [[] for _ in range(trainer_config.num_processes)]
    for idx, scene in enumerate(scenes):
        scene_splits[idx % len(scene_splits)].append(scene)

    assert sum(map(len, scene_splits)) == len(scenes)

    for i in range(trainer_config.num_processes):

        env_config = task_config.clone()
        env_config.defrost()
        if len(scenes) > 0:
            env_config.DATASET.CONTENT_SCENES = scene_splits[i]

        env_config.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = (
            trainer_config.sim_gpu_id)

        agent_sensors = trainer_config.sensors.strip().split(",")
        env_config.SIMULATOR.AGENT_0.SENSORS = agent_sensors
        env_config.freeze()
        env_configs.append(env_config)
        rl_env_configs.append(rl_env_config)

    envs = habitat.VectorEnv(
        make_env_fn=make_env_fn,
        env_fn_args=tuple(
            tuple(
                zip(
                    env_configs,
                    rl_env_configs,
                    env_classes,
                    range(trainer_config.num_processes),
                ))),
    )
    return envs