예제 #1
0
    def __init__(self, config):
        super().__init__(config)
        self.cur_wp = np.zeros(11)

        if self['sim'] == "bolplanck":
            halocat = CachedHaloCatalog(simname='bolplanck')
        elif self['sim'] == "old":
            halocat = CachedHaloCatalog(
                fname='/home/lom31/Halo/hlist_1.00231.list.halotools_v0p1.hdf5',
                update_cached_fname=True)
            halocat.redshift = 0.
        elif self['sim'] == "smdpl":
            halocat = CachedHaloCatalog(
                fname=
                '/home/lom31/.astropy/cache/halotools/halo_catalogs/SMDPL/rockstar/2019-07-03-18-38-02-9731.dat.my_cosmosim_halos.hdf5',
                update_cached_fname=True)
            #halocat = CachedHaloCatalog(fname='/home/lom31/.astropy/cache/halotools/halo_catalogs/smdpl/rockstar/2019-07-03-18-38-02-9731.dat.my_cosmosim_halos.hdf5',update_cached_fname = True)
            halocat.redshift = 0.
        elif self['sim'] == "mdr1":
            halocat = CachedHaloCatalog(
                fname=
                '/home/lom31/.astropy/cache/halotools/halo_catalogs/multidark/rockstar/hlist_0.68215.list.halotools_v0p4.hdf5',
                update_cached_fname=True)

        if self['param'] == 'mvir':
            cens_occ_model = Zheng07Cens(threshold=-19)
            cens_prof_model = TrivialPhaseSpace()
            sats_occ_model = Zheng07Sats(modulate_with_cenocc=True,
                                         threshold=-19)
            sats_prof_model = NFWPhaseSpace()
        elif self['param'] == 'vmax':
            cens_occ_model = Zheng07Cens(prim_haloprop_key='halo_vmax',
                                         threshold=-19)
            cens_prof_model = TrivialPhaseSpace()
            sats_occ_model = Zheng07Sats(prim_haloprop_key='halo_vmax',
                                         threshold=-19,
                                         modulate_with_cenocc=True)
            sats_prof_model = NFWPhaseSpace()

        global model_instance

        model_instance = HodModelFactory(centrals_occupation=cens_occ_model,
                                         centrals_profile=cens_prof_model,
                                         satellites_occupation=sats_occ_model,
                                         satellites_profile=sats_prof_model)

        try:
            model_instance.mock.populate()
        except:
            model_instance.populate_mock(halocat)
예제 #2
0
    def __makemodel__(self):
        """
        Return the Zheng 07 HOD model.

        This model evaluates Eqs. 2 and 5 of Zheng et al. 2007
        """
        from halotools.empirical_models import HodModelFactory
        from halotools.empirical_models import Zheng07Sats, Zheng07Cens
        from halotools.empirical_models import NFWPhaseSpace, TrivialPhaseSpace

        model = {}

        # use concentration from halo table
        if 'halo_nfw_conc' in self._halos.halo_table.colnames:
            conc_mass_model = 'direct_from_halo_catalog'
        # use empirical prescription for c(M)
        else:
            conc_mass_model = 'dutton_maccio14'

        # occupation functions
        cenocc = Zheng07Cens(prim_haloprop_key=self.mass)
        satocc = Zheng07Sats(prim_haloprop_key=self.mass, modulate_with_cenocc=True, cenocc_model=cenocc)
        satocc._suppress_repeated_param_warning = True

        # add to model
        model['centrals_occupation'] = cenocc
        model['satellites_occupation'] = satocc

        # profile functions
        kws = {'cosmology':self.cosmo.to_astropy(), 'redshift':self.attrs['redshift'], 'mdef':self.attrs['mdef']}
        model['centrals_profile'] = TrivialPhaseSpace(**kws)
        model['satellites_profile'] = NFWPhaseSpace(conc_mass_model=conc_mass_model, **kws)

        return HodModelFactory(**model)
예제 #3
0
def decorated_hod_model():
    cen_occ_model = AssembiasZheng07Cens(prim_haloprop_key='halo_mvir',
                                         sec_haloprop_key='halo_nfw_conc')
    cen_prof_model = TrivialPhaseSpace()
    sat_occ_model = AssembiasZheng07Sats(prim_haloprop_key='halo_mvir',
                                         sec_haloprop_key='halo_nfw_conc')
    sat_prof_model = NFWPhaseSpace()
    return HodModelFactory(centrals_occupation=cen_occ_model,
                           centrals_profile=cen_prof_model,
                           satellites_occupation=sat_occ_model,
                           satellites_profile=sat_prof_model)
예제 #4
0
from noisyopt import minimizeCompass, minimizeSPSA, bisect, AveragedFunction
warnings.filterwarnings("ignore")

wp_ng_vals = zehavi_data_file_20.get_wp()
bin_edges = zehavi_data_file_20.get_bins()
cov_matrix = zehavi_data_file_20.get_cov()
err = np.array([cov_matrix[i, i] for i in range(len(cov_matrix))])
bin_cen = (bin_edges[1:] + bin_edges[:-1]) / 2.

#cens_occ_model = Zheng07Cens(prim_haloprop_key = 'halo_vmax')
cens_occ_model = Zheng07Cens()
cens_prof_model = TrivialPhaseSpace()

#sats_occ_model =  Zheng07Sats(prim_haloprop_key = 'halo_vmax', modulate_with_cenocc=True)
sats_occ_model = Zheng07Sats(modulate_with_cenocc=True)
sats_prof_model = NFWPhaseSpace()

halocat = CachedHaloCatalog(
    fname=
    '/home/lom31/.astropy/cache/halotools/halo_catalogs/SMDPL/rockstar/2019-07-03-18-38-02-9731.dat.my_cosmosim_halos.hdf5',
    update_cached_fname=True)
halocat.redshift = 0.
pi_max = 60.
Lbox = 400.
model_instance = HodModelFactory(centrals_occupation=cens_occ_model,
                                 centrals_profile=cens_prof_model,
                                 satellites_occupation=sats_occ_model,
                                 satellites_profile=sats_prof_model)

try:
    model_instance.mock.populate()
예제 #5
0
    def __init__(self, **kwargs):
        """
    Initialize a ABHodFitModel.
    """

        # first, set up appropriate priors on parameters
        if ('priors' in kwargs.keys()):
            self.set_prior(kwargs['priors'])
        else:
            self.set_prior(default_priors)

        # set up keys for the parameter names for plotting
        self.param_names = [
            'alpha', 'logM1', 'siglogM', 'logM0', 'logMmin', 'Acens', 'Asats'
        ]
        self.latex_param_names = [
            r'$\alpha$', r'$\log(M_1)$', r'$\sigma_{\log M}$', r'$\log(M_0)$',
            r'$\log(M_{\rm min})$', r'$\mathcal{A}_{\rm cens}$',
            r'$\mathcal{A}_{\rm sats}'
        ]

        # set up size parameters for any MCMC
        self.set_nwalkers(ndim=default_ndim, nwalkers=default_nwalkers)

        # if data is specified, load it into memory
        if 'rpcut' in kwargs.keys():
            self.rpcut = kwargs['rpcut']
        else:
            self.rpcut = default_rpcut

        if ('datafile' in kwargs.keys()):
            self.read_datafile(datafile=kwargs['datafile'])
        else:
            self.read_datafile(datafile=default_wp_datafile)

        if ('covarfile' in kwargs.keys()):
            self.read_covarfile(covarfile=kwargs['covarfile'])
        else:
            self.read_covarfile(covarfile=default_wp_covarfile)

        # if binfile is specified, load it into memory
        # these are Manodeep-style bins
        if ('binfile' in kwargs.keys()):
            self.binfile = kwargs['binfile']
        else:
            self.binfile = default_binfile

        # set up a default HOD Model
        if ('cen_occ_model' in kwargs.keys()):
            cen_occ_model = kwargs['cen_occ_model']
        else:
            cen_occ_model = AssembiasZheng07Cens(
                prim_haloprop_key='halo_mvir',
                sec_haloprop_key='halo_nfw_conc')

        if ('cen_prof_model' in kwargs.keys()):
            cen_prof_model = kwargs['cen_prof_model']
        else:
            cen_prof_model = TrivialPhaseSpace()

        if ('sat_occ_model' in kwargs.keys()):
            sat_occ_model = kwargs['sat_occ_model']
        else:
            sat_occ_model = AssembiasZheng07Sats(
                prim_haloprop_key='halo_mvir',
                sec_haloprop_key='halo_nfw_conc')

        if ('sat_prof_model' in kwargs.keys()):
            sat_prof_model = kwargs['sat_prof_model']
        else:
            sat_prof_model = NFWPhaseSpace()

        # Default HOD Model is Zheng07 with Heaviside Assembly Bias
        self.hod_model = HodModelFactory(centrals_occupation=cen_occ_model,
                                         centrals_profile=cen_prof_model,
                                         satellites_occupation=sat_occ_model,
                                         satellites_profile=sat_prof_model)

        # set pi_max for wp(rp) calculations
        self.pi_max = default_pi_max

        if ('simname' in kwargs.keys()):
            simname = kwargs['simname']
        else:
            simname = default_simname

        if ('halo_finder' in kwargs.keys()):
            halo_finder = kwargs['halo_finder']
        else:
            halo_finder = default_halofinder

        if ('redshift' in kwargs.keys()):
            redshift = kwargs['redshift']
        else:
            redshift = default_simredshift

        if ('version_name' in kwargs.keys()):
            version_name = kwargs['version_name']
        else:
            version_name = default_version_name

        # set default simulation halocatalog to work with
        self.halocatalog = CachedHaloCatalog(simname=simname,
                                             halo_finder=halo_finder,
                                             redshift=redshift,
                                             version_name=version_name)

        return None
예제 #6
0
    def tabulate(cls,
                 halocat,
                 tpcf,
                 *tpcf_args,
                 mode='auto',
                 Num_ptcl_requirement=sim_defaults.Num_ptcl_requirement,
                 prim_haloprop_key=model_defaults.prim_haloprop_key,
                 prim_haloprop_bins=100,
                 sec_haloprop_key=model_defaults.sec_haloprop_key,
                 sec_haloprop_percentile_bins=None,
                 sats_per_prim_haloprop=3e-12,
                 downsample=1.0,
                 verbose=False,
                 redshift_space_distortions=True,
                 cens_prof_model=None,
                 sats_prof_model=None,
                 project_xyz=False,
                 cosmology_obs=None,
                 num_threads=1,
                 **tpcf_kwargs):
        """
        Tabulates correlation functions for halos such that galaxy correlation
        functions can be calculated rapidly.

        Parameters
        ----------
        halocat : object
            Either an instance of `halotools.sim_manager.CachedHaloCatalog` or
            `halotools.sim_manager.UserSuppliedHaloCatalog`. This halo catalog
            is used to tabubulate correlation functions.

        tpcf : function
            The halotools correlation function for which values are tabulated.
            Positional arguments should be passed after this function.
            Additional keyword arguments for the correlation function are also
            passed through this function.

        *tpcf_args : tuple, optional
            Positional arguments passed to the ``tpcf`` function.

        mode : string, optional
            String describing whether an auto- ('auto') or a cross-correlation
            ('cross') function is going to be tabulated.

        Num_ptcl_requirement : int, optional
            Requirement on the number of dark matter particles in the halo
            catalog. The column defined by the ``prim_haloprop_key`` string
            will have a cut placed on it: all halos with
            halocat.halo_table[prim_haloprop_key] <
            Num_ptcl_requirement*halocat.particle_mass will be thrown out
            immediately after reading the original halo catalog in memory.
            Default value is set in
            `~halotools.sim_defaults.Num_ptcl_requirement`.

        prim_haloprop_key : string, optional
            String giving the column name of the primary halo property
            governing the occupation statistics of gal_type galaxies. Default
            value is specified in the model_defaults module.

        prim_haloprop_bins : int or list, optional
            Integer determining how many (logarithmic) bins in primary halo
            property will be used. If a list or numpy array is provided, these
            will be used as bins directly.

        sec_haloprop_key : string, optional
            String giving the column name of the secondary halo property
            governing the assembly bias. Must be a key in the table passed to
            the methods of `HeavisideAssembiasComponent`. Default value is
            specified in the `~halotools.empirical_models.model_defaults`
            module.

        sec_haloprop_percentile_bins : int, float or None, optional
            If an integer, it determines how many evenly spaced bins in the
            secondary halo property percentiles are going to be used. If a
            float between 0 and 1, it determines the split. If None is
            provided, no binning is applied.

        sats_per_prim_haloprop : float, optional
            Float determing how many satellites sample each halo. For each
            halo, the number is drawn from a Poisson distribution with an
            expectation value of ``sats_per_prim_haloprop`` times the primary
            halo property.

        downsample : float or function, optional
            Fraction between 0 and 1 used to downsample the total sample used
            to tabulate correlation functions. Values below unity can be used
            to reduce the computation time. It should not result in biases but
            the resulting correlation functions will be less accurate. If
            float, the same value is applied to all halos. If function, it
            should return the fraction is a function of the primary halo
            property.

        verbose : boolean, optional
            Boolean determing whether the progress should be displayed.

        redshift_space_distortions : boolean, optional
            Boolean determining whether redshift space distortions should be
            applied to halos/galaxies.

        cens_prof_model : object, optional
            Instance of `halotools.empirical_models.MonteCarloGalProf` that
            determines the phase space coordinates of centrals. If none is
            provided, `halotools.empirical_models.TrivialPhaseSpace` will be
            used.

        sats_prof_model : object, optional
            Instance of `halotools.empirical_models.MonteCarloGalProf` that
            determines the phase space coordinates of satellites. If none is
            provided, `halotools.empirical_models.NFWPhaseSpace` will be used.

        project_xyz : bool, optional
            If True, the coordinates will be projected along all three spatial
            axes. By default, only the projection onto the z-axis is used.

        cosmology_obs : object, optional
            Instance of an astropy `~astropy.cosmology`. This can be used to
            correct coordinates in the simulation for the Alcock-Paczynski (AP)
            effect, i.e. a mismatch between the cosmology of the model
            (simulation) and the cosmology used to interpret observations. Note
            that the cosmology of the simulation is part of the halocat object.
            If None, no correction for the AP effect is applied. Also, a
            correction for the AP effect is only applied for auto-correlation
            functions.

        num_threads : int, optional
            How many threads to use for the tabulation.

        **tpcf_kwargs : dict, optional
                Keyword arguments passed to the ``tpcf`` function.

        Returns
        -------
        halotab : TabCorr
            Object containing all necessary information to calculate
            correlation functions for arbitrary galaxy models.
        """

        if 'period' in tpcf_kwargs:
            print('Warning: TabCorr will pass the keyword argument "period" ' +
                  'to {} based on the Lbox argument of'.format(tpcf.__name__) +
                  ' the halo catalog. The value you provided will be ignored.')
            del tpcf_kwargs['period']

        halotab = cls()

        if cosmology_obs is not None and mode == 'auto':
            rp_stretch = (
                (cosmology_obs.comoving_distance(halocat.redshift) *
                 cosmology_obs.H0) /
                (halocat.cosmology.comoving_distance(halocat.redshift) *
                 halocat.cosmology.H0))
            pi_stretch = (halocat.cosmology.efunc(halocat.redshift) /
                          cosmology_obs.efunc(halocat.redshift))
            lbox_stretch = np.array([rp_stretch, rp_stretch, pi_stretch])
        else:
            lbox_stretch = np.ones(3)

        # First, we tabulate the halo number densities.
        halos = halocat.halo_table
        halos = halos[halos['halo_pid'] == -1]
        halos = halos[halos[prim_haloprop_key] >=
                      (Num_ptcl_requirement + 0.5) * halocat.particle_mass]

        if isinstance(prim_haloprop_bins, int):
            prim_haloprop_bins = np.linspace(
                np.log10(np.amin(halos[prim_haloprop_key])) - 1e-3,
                np.log10(np.amax(halos[prim_haloprop_key])) + 1e-3,
                prim_haloprop_bins + 1)
        elif isinstance(prim_haloprop_bins, (list, np.ndarray)):
            pass
        else:
            raise ValueError('prim_haloprop_bins must be an int, list or ' +
                             'numpy array.')

        if sec_haloprop_percentile_bins is None:
            sec_haloprop_percentile_bins = np.array([-1e-3, 1 + 1e-3])
        elif isinstance(sec_haloprop_percentile_bins, float):
            if not (0 < sec_haloprop_percentile_bins
                    and sec_haloprop_percentile_bins < 1):
                raise ValueError('sec_haloprop_percentile_bins must be ' +
                                 'between 0 and 1.')
            sec_haloprop_percentile_bins = np.array(
                [-1e-3, sec_haloprop_percentile_bins, 1 + 1e-3])
        elif isinstance(sec_haloprop_percentile_bins, int):
            sec_haloprop_percentile_bins = np.linspace(
                -1e-3, 1 + 1e-3, sec_haloprop_percentile_bins + 1)
        else:
            raise ValueError('sec_haloprop_percentile_bins must be an int, ' +
                             'float, list or numpy array.')

        halos[sec_haloprop_key +
              '_percentile'] = (compute_conditional_percentiles(
                  table=halos,
                  prim_haloprop_key=prim_haloprop_key,
                  sec_haloprop_key=sec_haloprop_key))

        halotab.gal_type = Table()

        n_h, prim_haloprop_bins, sec_haloprop_percentile_bins = (
            np.histogram2d(
                np.log10(halos[prim_haloprop_key]),
                halos[sec_haloprop_key + '_percentile'],
                bins=[prim_haloprop_bins, sec_haloprop_percentile_bins]))
        halotab.gal_type['n_h'] = n_h.ravel(order='F')

        grid = np.meshgrid(prim_haloprop_bins, sec_haloprop_percentile_bins)
        halotab.gal_type['log_prim_haloprop_min'] = grid[0][:-1, :-1].ravel()
        halotab.gal_type['log_prim_haloprop_max'] = grid[0][:-1, 1:].ravel()
        halotab.gal_type['sec_haloprop_percentile_min'] = (
            grid[1][:-1, :-1].ravel())
        halotab.gal_type['sec_haloprop_percentile_max'] = (
            grid[1][1:, :-1].ravel())

        halotab.gal_type = vstack([halotab.gal_type, halotab.gal_type])
        halotab.gal_type['gal_type'] = np.concatenate(
            (np.repeat('centrals'.encode('utf8'),
                       len(halotab.gal_type) // 2),
             np.repeat('satellites'.encode('utf8'),
                       len(halotab.gal_type) // 2)))
        halotab.gal_type['prim_haloprop'] = 10**(
            0.5 * (halotab.gal_type['log_prim_haloprop_min'] +
                   halotab.gal_type['log_prim_haloprop_max']))
        halotab.gal_type['sec_haloprop_percentile'] = (
            0.5 * (halotab.gal_type['sec_haloprop_percentile_min'] +
                   halotab.gal_type['sec_haloprop_percentile_max']))

        # Now, we tabulate the correlation functions.
        cens_occ_model = Zheng07Cens(prim_haloprop_key=prim_haloprop_key)
        if cens_prof_model is None:
            cens_prof_model = TrivialPhaseSpace(redshift=halocat.redshift)
        sats_occ_model = Zheng07Sats(prim_haloprop_key=prim_haloprop_key)
        if sats_prof_model is None:
            sats_prof_model = NFWPhaseSpace(redshift=halocat.redshift)

        model = HodModelFactory(centrals_occupation=cens_occ_model,
                                centrals_profile=cens_prof_model,
                                satellites_occupation=sats_occ_model,
                                satellites_profile=sats_prof_model)

        model.param_dict['logMmin'] = 0
        model.param_dict['sigma_logM'] = 0.1
        model.param_dict['alpha'] = 1.0
        model.param_dict['logM0'] = 0
        model.param_dict['logM1'] = -np.log10(sats_per_prim_haloprop)
        model.populate_mock(halocat, Num_ptcl_requirement=Num_ptcl_requirement)

        gals = model.mock.galaxy_table
        idx_gals, idx_halos = crossmatch(gals['halo_id'], halos['halo_id'])
        assert np.all(gals['halo_id'][idx_gals] == halos['halo_id'][idx_halos])
        gals[sec_haloprop_key + '_percentile'] = np.zeros(len(gals))
        gals[sec_haloprop_key +
             '_percentile'][idx_gals] = (halos[sec_haloprop_key +
                                               '_percentile'][idx_halos])

        if verbose:
            print("Number of tracer particles: {0}".format(len(gals)))

        for xyz in ['xyz', 'yzx', 'zxy']:

            if verbose and project_xyz:
                print("Projecting onto {0}-axis...".format(xyz[2]))

            pos_all = (return_xyz_formatted_array(
                x=gals[xyz[0]],
                y=gals[xyz[1]],
                z=gals[xyz[2]],
                velocity=gals['v' +
                              xyz[2]] if redshift_space_distortions else 0,
                velocity_distortion_dimension='z',
                period=halocat.Lbox,
                redshift=halocat.redshift,
                cosmology=halocat.cosmology) * lbox_stretch)

            period = halocat.Lbox * lbox_stretch

            # Get a list of the positions of each sub-population.
            i_prim = np.digitize(np.log10(gals[prim_haloprop_key]),
                                 bins=prim_haloprop_bins,
                                 right=False) - 1
            mask = (i_prim < 0) | (i_prim >= len(prim_haloprop_bins))
            i_sec = np.digitize(gals[sec_haloprop_key + '_percentile'],
                                bins=sec_haloprop_percentile_bins,
                                right=False) - 1
            i_type = np.where(gals['gal_type'] == 'centrals', 0, 1)

            # Throw out those that don't fall into any bin.
            pos_all = pos_all[~mask]

            i = (i_prim + i_sec * (len(prim_haloprop_bins) - 1) + i_type *
                 ((len(prim_haloprop_bins) - 1) *
                  (len(sec_haloprop_percentile_bins) - 1)))

            pos_all = pos_all[np.argsort(i)]
            counts = np.bincount(i, minlength=len(halotab.gal_type))

            assert len(counts) == len(halotab.gal_type)

            pos_bin = []
            for i in range(len(halotab.gal_type)):

                pos = pos_all[np.sum(counts[:i]):np.sum(counts[:i + 1]), :]
                if halotab.gal_type['gal_type'][i] == 'centrals':
                    # Make sure the number of halos are consistent.
                    try:
                        assert len(pos) == int(halotab.gal_type['n_h'][i])
                    except AssertionError:
                        raise RuntimeError('There was an internal error in ' +
                                           'TabCorr. If possible, please ' +
                                           'report this bug in the TabCorr ' +
                                           'GitHub repository.')
                else:
                    if len(pos) == 0 and halotab.gal_type['n_h'][i] != 0:
                        raise RuntimeError(
                            'There was at least one bin without satellite ' +
                            'tracers. Increase sats_per_prim_haloprop.')

                if len(pos) > 0:

                    if isinstance(downsample, float):
                        use = np.random.random(len(pos)) < downsample
                    else:
                        use = (np.random.random(len(pos)) < downsample(
                            halotab.gal_type['prim_haloprop'][i]))

                    # If the down-sampling reduced the number of tracers to at
                    # or below one, force at least 2 tracers to not bias the
                    # clustering estimates.
                    if np.sum(use) <= 1 and len(pos) > 1:
                        use = np.zeros(len(pos), dtype=bool)
                        use[np.random.choice(len(pos), size=2)] = True

                    pos = pos[use]

                pos_bin.append(pos)

            if mode == 'auto':
                combinations = itertools.combinations_with_replacement(
                    range(len(halotab.gal_type)), 2)
            else:
                combinations = range(len(halotab.gal_type))

            if xyz == 'xyz':
                tpcf_matrix, tpcf_shape = compute_tpcf_matrix(
                    mode,
                    pos_bin,
                    tpcf,
                    period,
                    tpcf_args,
                    tpcf_kwargs,
                    combinations,
                    num_threads=num_threads,
                    verbose=verbose)

            if not project_xyz or mode == 'cross':
                break
            elif xyz != 'xyz':
                tpcf_matrix += compute_tpcf_matrix(mode,
                                                   pos_bin,
                                                   tpcf,
                                                   period,
                                                   tpcf_args,
                                                   tpcf_kwargs,
                                                   combinations,
                                                   num_threads=num_threads,
                                                   verbose=verbose)[0]

        if project_xyz and mode == 'auto':
            tpcf_matrix /= 3.0

        if mode == 'auto':
            tpcf_matrix_flat = []
            for i in range(tpcf_matrix.shape[0]):
                tpcf_matrix_flat.append(
                    symmetric_matrix_to_array(tpcf_matrix[i]))
            tpcf_matrix = np.array(tpcf_matrix_flat)

        # Remove entries that don't have any halos.
        use = halotab.gal_type['n_h'] != 0
        halotab.gal_type = halotab.gal_type[use]
        if mode == 'auto':
            use = symmetric_matrix_to_array(np.outer(use, use))
        tpcf_matrix = tpcf_matrix[:, use]

        halotab.gal_type['n_h'] /= np.prod(halocat.Lbox * lbox_stretch)

        halotab.attrs = {}
        halotab.attrs['tpcf'] = tpcf.__name__
        halotab.attrs['mode'] = mode
        halotab.attrs['simname'] = halocat.simname
        halotab.attrs['redshift'] = halocat.redshift
        halotab.attrs['Num_ptcl_requirement'] = Num_ptcl_requirement
        halotab.attrs['prim_haloprop_key'] = prim_haloprop_key
        halotab.attrs['sec_haloprop_key'] = sec_haloprop_key

        halotab.tpcf_args = tpcf_args
        halotab.tpcf_kwargs = tpcf_kwargs
        halotab.tpcf_shape = tpcf_shape
        halotab.tpcf_matrix = tpcf_matrix

        halotab.init = True

        return halotab
예제 #7
0
파일: tabcorr.py 프로젝트: j-dr/TabCorr
    def tabulate(cls,
                 halocat,
                 tpcf,
                 *tpcf_args,
                 mode='auto',
                 Num_ptcl_requirement=sim_defaults.Num_ptcl_requirement,
                 cosmology=sim_defaults.default_cosmology,
                 prim_haloprop_key=model_defaults.prim_haloprop_key,
                 prim_haloprop_bins=100,
                 sec_haloprop_key=model_defaults.sec_haloprop_key,
                 sec_haloprop_percentile_bins=None,
                 sats_per_prim_haloprop=3e-12,
                 downsample=1.0,
                 verbose=False,
                 redshift_space_distortions=True,
                 cens_prof_model=None,
                 sats_prof_model=None,
                 project_xyz=False,
                 cosmology_ref=None,
                 comm=None,
                 **tpcf_kwargs):
        """
        Tabulates correlation functions for halos such that galaxy correlation
        functions can be calculated rapidly.

        Parameters
        ----------
        halocat : object
            Either an instance of `halotools.sim_manager.CachedHaloCatalog` or
            `halotools.sim_manager.UserSuppliedHaloCatalog`. This halo catalog
            is used to tabubulate correlation functions.

        tpcf : function
            The halotools correlation function for which values are tabulated.
            Positional arguments should be passed after this function.
            Additional keyword arguments for the correlation function are also
            passed through this function.

        *tpcf_args : tuple, optional
            Positional arguments passed to the ``tpcf`` function.

        mode : string, optional
            String describing whether an auto- ('auto') or a cross-correlation
            ('cross') function is going to be tabulated.

        Num_ptcl_requirement : int, optional
            Requirement on the number of dark matter particles in the halo
            catalog. The column defined by the ``prim_haloprop_key`` string
            will have a cut placed on it: all halos with
            halocat.halo_table[prim_haloprop_key] <
            Num_ptcl_requirement*halocat.particle_mass will be thrown out
            immediately after reading the original halo catalog in memory.
            Default value is set in
            `~halotools.sim_defaults.Num_ptcl_requirement`.

        cosmology : object, optional
            Instance of an astropy `~astropy.cosmology`. Default cosmology is
            set in `~halotools.sim_manager.sim_defaults`. This might be used to
            calculate phase-space distributions and redshift space distortions.

        prim_haloprop_key : string, optional
            String giving the column name of the primary halo property
            governing the occupation statistics of gal_type galaxies. Default
            value is specified in the model_defaults module.

        prim_haloprop_bins : int or list, optional
            Integer determining how many (logarithmic) bins in primary halo
            property will be used. If a list or numpy array is provided, these
            will be used as bins directly.

        sec_haloprop_key : string, optional
            String giving the column name of the secondary halo property
            governing the assembly bias. Must be a key in the table passed to
            the methods of `HeavisideAssembiasComponent`. Default value is
            specified in the `~halotools.empirical_models.model_defaults`
            module.

        sec_haloprop_percentile_bins : int, float, list or None, optional
            If an integer, it determines how many evenly spaced bins in the
            secondary halo property percentiles are going to be used. If a
            float between 0 and 1, it determines the split. Finally, if a list
            or numpy array, it directly describes the bins that are going to be
            used. If None is provided, no binning is applied.

        sats_per_prim_haloprop : float, optional
            Float determing how many satellites sample each halo. For each
            halo, the number is drawn from a Poisson distribution with an
            expectation value of ``sats_per_prim_haloprop`` times the primary
            halo property.

        downsample : float, optional
            Fraction between 0 and 1 used to downsample the total sample used
            to tabulate correlation functions. Values below unity can be used
            to reduce the computation time. It should not result in biases but
            the resulting correlation functions will be less accurate.

        verbose : boolean, optional
            Boolean determing whether the progress should be displayed.

        redshift_space_distortions : boolean, optional
            Boolean determining whether redshift space distortions should be
            applied to halos/galaxies.

        cens_prof_model : object, optional
            Instance of `halotools.empirical_models.MonteCarloGalProf` that
            determines the phase space coordinates of centrals. If none is
            provided, `halotools.empirical_models.TrivialPhaseSpace` will be
            used.

        sats_prof_model : object, optional
            Instance of `halotools.empirical_models.MonteCarloGalProf` that
            determines the phase space coordinates of satellites. If none is
            provided, `halotools.empirical_models.NFWPhaseSpace` will be used.

        project_xyz : bool, optional
            If True, the coordinates will be projected along all three spatial
            axes. By default, only the projection onto the z-axis is used.

        comm : MPI communicator
            If not None, then will distribute calculation via MPI

        **tpcf_kwargs : dict, optional
                Keyword arguments passed to the ``tpcf`` function.

        Returns
        -------
        halotab : TabCorr
            Object containing all necessary information to calculate
            correlation functions for arbitrary galaxy models.
        """

        if sec_haloprop_percentile_bins is None:
            sec_haloprop_percentile_bins = np.array([0, 1])
        elif isinstance(sec_haloprop_percentile_bins, float):
            sec_haloprop_percentile_bins = np.array(
                [0, sec_haloprop_percentile_bins, 1])

        if 'period' in tpcf_kwargs:
            print('Warning: TabCorr will pass the keyword argument "period" ' +
                  'to {} based on the Lbox argument of'.format(tpcf.__name__) +
                  ' the halo catalog. The value you provided will be ignored.')
            del tpcf_kwargs['period']

        halotab = cls()

        if cosmology_ref is not None and mode == 'auto':
            rp_stretch = (
                (cosmology_ref.comoving_distance(halocat.redshift) *
                 cosmology_ref.H0) /
                (cosmology.comoving_distance(halocat.redshift) * cosmology.H0))
            pi_stretch = (cosmology.efunc(halocat.redshift) /
                          cosmology_ref.efunc(halocat.redshift))
            lbox_stretch = np.array([rp_stretch, rp_stretch, pi_stretch])
        else:
            lbox_stretch = np.ones(3)

        # First, we tabulate the halo number densities.
        halos = halocat.halo_table
        halos = halos[halos['halo_pid'] == -1]
        halos = halos[halos[prim_haloprop_key] >=
                      (Num_ptcl_requirement - 0.5) * halocat.particle_mass]

        if isinstance(prim_haloprop_bins, int):
            prim_haloprop_bins = np.linspace(
                np.log10(np.amin(halos[prim_haloprop_key])) - 1e-3,
                np.log10(np.amax(halos[prim_haloprop_key])) + 1e-3,
                prim_haloprop_bins + 1)
        elif not isinstance(prim_haloprop_bins, (list, np.ndarray)):
            raise ValueError('prim_haloprop_bins must be an int, list or ' +
                             'numpy array.')

        halos[sec_haloprop_key +
              '_percentile'] = (compute_conditional_percentiles(
                  table=halos,
                  prim_haloprop_key=prim_haloprop_key,
                  sec_haloprop_key=sec_haloprop_key))

        halotab.gal_type = Table()

        n_h, prim_haloprop_bins, sec_haloprop_percentile_bins = (
            np.histogram2d(
                np.log10(halos[prim_haloprop_key]),
                halos[sec_haloprop_key + '_percentile'],
                bins=[prim_haloprop_bins, sec_haloprop_percentile_bins]))
        halotab.gal_type['n_h'] = n_h.ravel(order='F') / np.prod(
            halocat.Lbox * lbox_stretch)

        grid = np.meshgrid(prim_haloprop_bins, sec_haloprop_percentile_bins)
        halotab.gal_type['log_prim_haloprop_min'] = grid[0][:-1, :-1].ravel()
        halotab.gal_type['log_prim_haloprop_max'] = grid[0][:-1, 1:].ravel()
        halotab.gal_type['sec_haloprop_percentile_min'] = (
            grid[1][:-1, :-1].ravel())
        halotab.gal_type['sec_haloprop_percentile_max'] = (
            grid[1][1:, :-1].ravel())

        halotab.gal_type = vstack([halotab.gal_type, halotab.gal_type])
        halotab.gal_type['gal_type'] = np.concatenate(
            (np.repeat('centrals'.encode('utf8'),
                       len(halotab.gal_type) // 2),
             np.repeat('satellites'.encode('utf8'),
                       len(halotab.gal_type) // 2)))
        halotab.gal_type['prim_haloprop'] = 10**(
            0.5 * (halotab.gal_type['log_prim_haloprop_min'] +
                   halotab.gal_type['log_prim_haloprop_max']))
        halotab.gal_type['sec_haloprop_percentile'] = (
            0.5 * (halotab.gal_type['sec_haloprop_percentile_min'] +
                   halotab.gal_type['sec_haloprop_percentile_max']))

        # Now, we tabulate the correlation functions.
        cens_occ_model = Zheng07Cens(prim_haloprop_key=prim_haloprop_key)
        if cens_prof_model is None:
            cens_prof_model = TrivialPhaseSpace(redshift=halocat.redshift)
        sats_occ_model = Zheng07Sats(prim_haloprop_key=prim_haloprop_key)
        if sats_prof_model is None:
            sats_prof_model = NFWPhaseSpace(redshift=halocat.redshift)

        model = HodModelFactory(centrals_occupation=cens_occ_model,
                                centrals_profile=cens_prof_model,
                                satellites_occupation=sats_occ_model,
                                satellites_profile=sats_prof_model)

        model.param_dict['logMmin'] = 0
        model.param_dict['sigma_logM'] = 0.1
        model.param_dict['alpha'] = 1.0
        model.param_dict['logM0'] = 0
        model.param_dict['logM1'] = -np.log10(sats_per_prim_haloprop)
        model.populate_mock(halocat, Num_ptcl_requirement=Num_ptcl_requirement)
        gals = model.mock.galaxy_table
        gals = gals[np.random.random(len(gals)) < downsample]

        idx_gals, idx_halos = crossmatch(gals['halo_id'], halos['halo_id'])
        assert np.all(gals['halo_id'][idx_gals] == halos['halo_id'][idx_halos])
        gals[sec_haloprop_key + '_percentile'] = np.zeros(len(gals))
        gals[sec_haloprop_key +
             '_percentile'][idx_gals] = (halos[sec_haloprop_key +
                                               '_percentile'][idx_halos])

        if verbose:
            print("Number of tracer particles: {0}".format(len(gals)))

        for xyz in ['xyz', 'yzx', 'zxy']:
            pos_all = return_xyz_formatted_array(
                x=gals[xyz[0]],
                y=gals[xyz[1]],
                z=gals[xyz[2]],
                velocity=gals['v' +
                              xyz[2]] if redshift_space_distortions else 0,
                velocity_distortion_dimension='z',
                period=halocat.Lbox,
                redshift=halocat.redshift,
                cosmology=cosmology) * lbox_stretch

            pos = []
            n_gals = []
            for i in range(len(halotab.gal_type)):

                mask = ((10**(halotab.gal_type['log_prim_haloprop_min'][i]) <
                         gals[prim_haloprop_key]) &
                        (10**(halotab.gal_type['log_prim_haloprop_max'][i]) >=
                         gals[prim_haloprop_key]) &
                        (halotab.gal_type['sec_haloprop_percentile_min'][i] <
                         gals[sec_haloprop_key + '_percentile']) &
                        (halotab.gal_type['sec_haloprop_percentile_max'][i] >=
                         gals[sec_haloprop_key + '_percentile']) &
                        (halotab.gal_type['gal_type'][i] == gals['gal_type']))

                pos.append(pos_all[mask])
                n_gals.append(np.sum(mask))

            n_gals = np.array(n_gals)
            n_done = 0

            if verbose:
                print("Projecting onto {0}-axis...".format(xyz[2]))

            gal_type_index = np.arange(len(halotab.gal_type))

            if (comm is not None) & (has_mpi):
                size = comm.size
                rank = comm.rank
                gal_type_index = gal_type_index[rank::size]
                print('{}: len(gal_type_index)={}'.format(
                    rank, len(gal_type_index)))
            elif (comm is not None) & (not has_mpi):
                raise (ImportError(
                    "You passed something to the comm argument, but I couldn't import mpi4py"
                ))

            for i in gal_type_index:

                if mode == 'auto':
                    for k in np.arange(i, len(halotab.gal_type)):
                        if len(pos[i]) * len(pos[k]) > 0:

                            if verbose:
                                if comm:
                                    if comm.rank == 0:
                                        n_done += (n_gals[i] * n_gals[k] *
                                                   (2 if k != i else 1))
                                        print_progress(n_done /
                                                       np.sum(n_gals)**2)
                                else:
                                    n_done += (n_gals[i] * n_gals[k] *
                                               (2 if k != i else 1))
                                    print_progress(n_done / np.sum(n_gals)**2)
                            if i == k:
                                xi = tpcf(pos[i],
                                          *tpcf_args,
                                          sample2=pos[k] if k != i else None,
                                          do_auto=True,
                                          do_cross=False,
                                          period=halocat.Lbox * lbox_stretch,
                                          **tpcf_kwargs)
                            else:
                                xi = tpcf(pos[i],
                                          *tpcf_args,
                                          sample2=pos[k] if k != i else None,
                                          do_auto=False,
                                          do_cross=True,
                                          period=halocat.Lbox * lbox_stretch,
                                          **tpcf_kwargs)

                            if 'tpcf_matrix' not in locals():
                                tpcf_matrix = np.zeros(
                                    (len(xi.ravel()), len(halotab.gal_type),
                                     len(halotab.gal_type)))
                                tpcf_shape = xi.shape
                            tpcf_matrix[:, i, k] += xi.ravel()
                            tpcf_matrix[:, k, i] = tpcf_matrix[:, i, k]

                elif mode == 'cross':
                    if len(pos[i]) > 0:

                        if verbose:
                            n_done += n_gals[i]
                            print_progress(n_done / np.sum(n_gals))

                        xi = tpcf(pos[i],
                                  *tpcf_args,
                                  **tpcf_kwargs,
                                  period=halocat.Lbox * lbox_stretch)
                        if tpcf.__name__ == 'delta_sigma':
                            xi = xi[1]
                        if 'tpcf_matrix' not in locals():
                            tpcf_matrix = np.zeros(
                                (len(xi.ravel()), len(halotab.gal_type)))
                            tpcf_shape = xi.shape
                        tpcf_matrix[:, i] = xi.ravel()

            if not project_xyz or mode == 'cross':
                break

        if comm:
            tpcf_matrix = comm.allreduce(tpcf_matrix, op=MPI.SUM)

        if project_xyz and mode == 'auto':
            tpcf_matrix /= 3.0

        if mode == 'auto':
            tpcf_matrix_flat = []
            for i in range(tpcf_matrix.shape[0]):
                tpcf_matrix_flat.append(
                    symmetric_matrix_to_array(tpcf_matrix[i]))
            tpcf_matrix = np.array(tpcf_matrix_flat)

        halotab.attrs = {}
        halotab.attrs['tpcf'] = tpcf.__name__
        halotab.attrs['mode'] = mode
        halotab.attrs['simname'] = halocat.simname
        halotab.attrs['redshift'] = halocat.redshift
        halotab.attrs['Num_ptcl_requirement'] = Num_ptcl_requirement
        halotab.attrs['prim_haloprop_key'] = prim_haloprop_key
        halotab.attrs['sec_haloprop_key'] = sec_haloprop_key

        halotab.tpcf_args = tpcf_args
        halotab.tpcf_kwargs = tpcf_kwargs
        halotab.tpcf_shape = tpcf_shape
        halotab.tpcf_matrix = tpcf_matrix

        halotab.init = True

        return halotab
    def assign_positions(self, **kwargs):
        """
        assign satellite positions based on subhalo radial positions and random angular positions.
        """

        if 'table' in kwargs.keys():
            table = kwargs['table']
            halo_x = table['halo_x']
            halo_y = table['halo_y']
            halo_z = table['halo_z']
            halo_hostid = table['halo_hostid']
            halo_id = table['halo_id']
            b_to_a = table['halo_b_to_a']
            c_to_a = table['halo_c_to_a']
            halo_axisA_x = table['halo_axisA_x']
            halo_axisA_y = table['halo_axisA_y']
            halo_axisA_z = table['halo_axisA_z']
            halo_axisC_x = table['halo_axisC_x']
            halo_axisC_y = table['halo_axisC_y']
            halo_axisC_z = table['halo_axisC_z']
            concentration = table['halo_nfw_conc']
            rvir = table['halo_rvir']
            try:
                Lbox = kwargs['Lbox']
            except KeyError:
                Lbox = self._Lbox
        else:
            halo_x = kwargs['halo_x']
            halo_y = kwargs['halo_y']
            halo_z = kwargs['halo_z']
            halo_hostid = kwargs['halo_hostid']
            halo_id = kwargs['halo_id']
            b_to_a = kwargs['halo_b_to_a']
            c_to_a = kwargs['halo_c_to_a']
            halo_axisA_x = kwargs['halo_axisA_x']
            halo_axisA_y = kwargs['halo_axisA_y']
            halo_axisA_z = kwargs['halo_axisA_z']
            halo_axisC_x = kwargs['halo_axisC_x']
            halo_axisC_y = kwargs['halo_axisC_y']
            halo_axisC_z = kwargs['halo_axisC_z']
            concentration = kwargs['halo_nfw_conc']
            rvir = tabel['halo_rvir']
            try:
                Lbox = kwargs['Lbox']
            except KeyError:
                Lbox = self._Lbox

        Npts = len(halo_x)

        # get host halo properties
        inds1, inds2 = crossmatch(halo_hostid, halo_id)

        # some sub-haloes point to a host that does not exist
        no_host = ~np.in1d(halo_hostid, halo_id)
        if np.sum(no_host) > 0:
            msg = ("There are {0} sub-haloes with no host halo.".format(
                np.sum(no_host)))
            warn(msg)

        host_halo_concentration = np.zeros(Npts)
        host_halo_concentration[inds1] = concentration[inds2]

        host_halo_rvir = np.zeros(Npts)
        host_halo_rvir[inds1] = rvir[inds2]

        host_b_to_a = np.zeros(Npts)
        host_b_to_a[inds1] = b_to_a[inds2]
        host_c_to_a = np.zeros(Npts)
        host_c_to_a[inds1] = c_to_a[inds2]

        major_axis = np.vstack((halo_axisA_x, halo_axisA_y, halo_axisA_z)).T
        minor_axis = np.vstack((halo_axisC_x, halo_axisC_y, halo_axisC_z)).T
        inter_axis = np.cross(major_axis, minor_axis)

        host_major_axis = np.zeros((Npts, 3))
        host_inter_axis = np.zeros((Npts, 3))
        host_minor_axis = np.zeros((Npts, 3))
        host_major_axis[inds1] = major_axis[inds2]
        host_inter_axis[inds1] = inter_axis[inds2]
        host_minor_axis[inds1] = minor_axis[inds2]

        # host x,y,z-position
        halo_x[inds1] = halo_x[inds2]
        halo_y[inds1] = halo_y[inds2]
        halo_z[inds1] = halo_z[inds2]

        # host halo centric positions
        phi = np.random.uniform(0, 2 * np.pi, Npts)
        uran = np.random.rand(Npts) * 2 - 1

        cos_t = uran
        sin_t = np.sqrt((1. - cos_t * cos_t))

        b_to_a, c_to_a = self.anisotropy_bias_response(host_b_to_a,
                                                       host_c_to_a)

        c_to_b = c_to_a / b_to_a

        # temporarily use x-axis as the major axis
        x = 1.0 / c_to_a * sin_t * np.cos(phi)
        y = 1.0 / c_to_b * sin_t * np.sin(phi)
        z = cos_t

        x_correlated_axes = np.vstack((x, y, z)).T

        x_axes = np.tile((1, 0, 0), Npts).reshape((Npts, 3))

        matrices = rotation_matrices_from_basis(host_major_axis,
                                                host_inter_axis,
                                                host_minor_axis)

        # rotate x-axis into the major axis
        #angles = angles_between_list_of_vectors(x_axes, major_axes)
        #rotation_axes = vectors_normal_to_planes(x_axes, major_axes)
        #matrices = rotation_matrices_from_angles(angles, rotation_axes)

        correlated_axes = rotate_vector_collection(matrices, x_correlated_axes)

        x, y, z = correlated_axes[:, 0], correlated_axes[:,
                                                         1], correlated_axes[:,
                                                                             2]

        nfw = NFWPhaseSpace(conc_mass_model='direct_from_halo_catalog', )
        dimensionless_radial_distance = nfw._mc_dimensionless_radial_distance(
            host_halo_concentration)

        x *= dimensionless_radial_distance
        y *= dimensionless_radial_distance
        z *= dimensionless_radial_distance

        x *= host_halo_rvir
        y *= host_halo_rvir
        z *= host_halo_rvir

        a = 1
        b = b_to_a * a
        c = c_to_a * a
        T = (c**2 - b**2) / (c**2 - a**2)
        q = b / a
        s = c / a

        x *= np.sqrt(q * s)
        y *= np.sqrt(q * s)
        z *= np.sqrt(q * s)

        # host-halo centric radial distance
        r = np.sqrt(x * x + y * y + z * z)

        # move back into original cordinate system
        xx = halo_x + x
        yy = halo_y + y
        zz = halo_z + z

        xx[no_host] = halo_x[no_host]
        yy[no_host] = halo_y[no_host]
        zz[no_host] = halo_z[no_host]

        # account for PBCs
        xx, yy, zz = wrap_coordinates(xx, yy, zz, Lbox)

        if 'table' in kwargs.keys():
            # assign satellite galaxy positions
            try:
                mask = (table['gal_type'] == 'satellites')
            except KeyError:
                mask = np.array([True] * len(table))
                msg = (
                    "`gal_type` not indicated in `table`.",
                    "The orientation is being assigned for all galaxies in the `table`."
                )
                print(msg)

            table['x'] = halo_x * 1.0
            table['y'] = halo_y * 1.0
            table['z'] = halo_z * 1.0

            table['x'][mask] = xx[mask]
            table['y'][mask] = yy[mask]
            table['z'][mask] = zz[mask]

            table['r'] = 0.0
            table['r'][mask] = r[mask]

            table['halo_x'][mask] = halo_x[mask]
            table['halo_y'][mask] = halo_y[mask]
            table['halo_z'][mask] = halo_z[mask]

            return table
        else:
            x = xx
            y = yy
            z = zz
            return np.vstack((x, y, z)).T
예제 #9
0
    def to_halotools(cosmo, redshift, mdef, concentration_key=None, **kwargs):
        """
        Return the Zheng 07 HOD model.

        See :func:`halotools.empirical_models.zheng07_model_dictionary`.

        Parameters
        ----------
        cosmo :
            the nbodykit or astropy Cosmology object to use in the model
        redshift : float
            the desired redshift of the model
        mdef : str, optional
            string specifying mass definition, used for computing default
            halo radii and concentration; should be 'vir' or 'XXXc' or
            'XXXm' where 'XXX' is an int specifying the overdensity
        concentration_key : str
            the name of the column that will specify concentration; if not
            provided, the analytic formula from
            `Dutton and Maccio 2014 <https://arxiv.org/abs/1402.7073>`_
            is used.
        **kwargs :
            additional keywords passed to the model components; see the
            Halotools documentation for further details

        Returns
        -------
        :class:`~halotools.empirical_models.HodModelFactory`
            the halotools object implementing the HOD model
        """
        from halotools.empirical_models import Zheng07Sats, Zheng07Cens, NFWPhaseSpace, TrivialPhaseSpace
        from halotools.empirical_models import HodModelFactory

        kwargs.setdefault('modulate_with_cenocc', True)

        # need astropy Cosmology
        if isinstance(cosmo, Cosmology):
            cosmo = cosmo.to_astropy()

        # determine concentration key
        if concentration_key is None:
            conc_mass_model = 'dutton_maccio14'
        else:
            conc_mass_model = 'direct_from_halo_catalog'

        # determine mass column
        mass_key = 'halo_m' + mdef

        # occupation functions
        cenocc = Zheng07Cens(prim_haloprop_key=mass_key, **kwargs)
        satocc = Zheng07Sats(prim_haloprop_key=mass_key,
                             cenocc_model=cenocc,
                             **kwargs)
        satocc._suppress_repeated_param_warning = True

        # profile functions
        kwargs.update({'cosmology': cosmo, 'redshift': redshift, 'mdef': mdef})
        censprof = TrivialPhaseSpace(**kwargs)
        satsprof = NFWPhaseSpace(conc_mass_model=conc_mass_model, **kwargs)

        # make the model
        model = {}
        model['centrals_occupation'] = cenocc
        model['centrals_profile'] = censprof
        model['satellites_occupation'] = satocc
        model['satellites_profile'] = satsprof
        return HodModelFactory(**model)