def lnlike(theta): model = Zheng07(threshold = -20.) model.param_dict['logM0'] = theta[0] model.param_dict['sigma_logM'] = np.exp(theta[1]) model.param_dict['logMmin'] = theta[2] model.param_dict['alpha'] = theta[3] model.param_dict['logM1'] = theta[4] model.populate_mock() r , xir_model = model.mock.compute_galaxy_clustering() res = xir_data - xir_model return -0.5*np.sum(np.dot(np.dot(res , inv_c) , res))
def __init__(self): self.model = Zheng07(threshold = -21.5)
import numpy as np import abcpmc import matplotlib.pyplot as plt from interruptible_pool import InterruptiblePool import time plt.switch_backend("Agg") from halotools.empirical_models import Zheng07 model = Zheng07(threshold = -21.5) print 'Data HOD Parameters ', model.param_dict n_avg = 5 avg_nz, avg_corr = 0., 0. for i in xrange(n_avg): model.populate_mock() # number density avg_nz += model.mock.number_density # 6th element of xi(r) array r, xi_r = model.mock.compute_galaxy_clustering(N_threads=1) try: avg_xi += xi_r except NameError: avg_xi = xi_r
def __init__(self): self.model = Zheng07()
import time plt.switch_backend("Agg") from halotools.empirical_models import Zheng07 from astropy.table import Table import corner from scipy.stats import norm, gamma from scipy.stats import multivariate_normal from scipy.spatial import cKDTree import abcpmc import seaborn as sns sns.set_style("white") np.random.seed() from abcpmc import mpi_util from scipy.stats import ks_2samp model = Zheng07(threshold=-20.) print 'Data HOD Parameters ', model.param_dict """data and covariance""" #We shouldn't treat a mean of mocks as a data! mock_nbar = np.loadtxt("nbar_Mr20.dat") #data_nbar = np.mean(mock_nbar) #mocks_xir = np.loadtxt("xir.dat") #data_xir = np.mean(mocks_xir , axis = 0) model.populate_mock() data_nbar = model.mock.number_density data_xir = model.mock.compute_galaxy_clustering()[1] np.savetxt("xir_Mr20.dat", data_xir) data = [data_nbar, data_xir]
ax.plot(mass, input_hod_centrals, color='red', linewidth = 1.) plt.loglog() plt.xlim(xmin=1e11, xmax=1e14) plt.ylim(ymin=5e-3, ymax=10) plt.xticks(fontsize=20) plt.yticks(fontsize=20) fig4.savefig('/home/mj/public_html/abcpaper/hod_centrals.pdf', bbox_extra_artists=[xlabel, ylabel], bbox_inches='tight') """ fig5 = plt.figure() ax = fig5.add_subplot(111) xlabel = ax.set_xlabel('R [Mpc]', fontsize=20) ylabel = ax.set_ylabel(r'$\xi_{\rm gg}$', fontsize=25) title = ax.set_title(r'tpcf of galaxies with $M_{r} > -20$', fontsize=25) m = Zheng07() m.populate_mock() rr = m.compute_galaxy_clustering()[0] xir = np.loadtxt("xir_Mr20.dat") xir_cov = np.loadtxt("clustering_covariance_Mr20.dat") ax.errorbar(rr, xir, yerr=np.diag(xir_cov)**.5, fmt="ok", ms=1, capsize=2, alpha=1.) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.xlim(xmin=0.1, xmax=15) ax.set_yscale("log")
from halotools.empirical_models import Zheng07, model_defaults from halotools.mock_observables import wp from halotools.mock_observables.clustering import tpcf from halotools.empirical_models.mock_helpers import (three_dim_pos_bundle, infer_mask_from_kwargs) from halotools.mock_observables.clustering import wp from halotools.sim_manager import supported_sims import matplotlib.pyplot as plt plt.switch_backend("Agg") import time import numpy as np model = Zheng07() xir = [] for i in range(500): model.populate_mock() xir.append(model.mock.compute_galaxy_clustering()[1]) covar = np.cov(np.array(xir).T) np.savetxt("clustering_covariance_Mr20.dat", covar) """ a = time.time() model.mock.compute_galaxy_clustering() print time.time() - a rbins = model_defaults.default_rbins rbin_centers = (rbins[1:] + rbins[:-1])/2. cat = supported_sims.HaloCatalog() l = cat.Lbox print l p_bins = np.linspace(0,l/2,200) mask = infer_mask_from_kwargs(model.mock.galaxy_table)