예제 #1
0
        while int(''.join(curentday.split('-'))) < int(''.join(nowday.split('-'))):
    
            
            if int(''.join(curentday.split('-'))) >= int(''.join("2019-11-06".split('-'))):
                logging.info("****Day_nums-1 == index {}****".format(curentday ))
                break

            if int(''.join(curentday.split('-'))) == int(''.join("2019-10-27".split('-'))):
                curentday = datetime.datetime.strptime(curentday,"%Y-%m-%d") + datetime.timedelta(days=1)
                curentday = curentday.strftime("%Y-%m-%d")
                continue 
            try:
                iiter =0
                #从flaskapp log日志中,.1 .2 两个文件,提取出  两个 txt
                applog = os.path.join(PATH,logfile.format(curentday))
                viewclickfile = handle_log.log(applog, curentday)

                #从两个TXT  提取 csv
                train_base = handle_train.generate_train_base(curentday,viewclickfile)
                #train_base = os.path.join(PATH,"train_base/train_base--2019-09-01.csv")

                #  结合 mysql数据中 储存的数据,出  训练数据
                train_data = feature.get_data_with_pandas(train_base, batch_size)
              
                
                lr = 0.001
                loss_sum = 0.0
                accuracy_sum = 0.0 
                break_cnt = 1
                
                flag = True
예제 #2
0
    # file = sys.argv[1]
    # file = file[:len(file) - 1]
    #
    # day = sys.argv[2]

    print_iter = 1
    serve_iter = 1
    save_iter = 1
    decay_iter = 1

    print("*" * 40)
    try:
        import handle_log

        begin = time.time()
        handle_log.log(file, day)
        print(day, "handle log costs: ", time.time() - begin)

        import handle_train

        begin = time.time()
        train_base = handle_train.generate_train_base(day)
        print(day, "handle train_base costs: ", time.time() - begin)

        import feature

        begin = time.time()
        train_data = feature.get_data_with_pandas(train_base, 128)
        print(day, "handle feature costs: ", time.time() - begin)

        import model