def __init__(self, model_type="BERT", model_name="bert-base-uncased"): self.adaptor = get_adaptor(model_type) model = AutoModelForNextSentencePrediction.from_pretrained(model_name) super().__init__(model_type, model_name, model) self._pipeline = None self._trainer = None
def __init__(self, model_type="DISTILBERT", model_name="distilbert-base-uncased", num_labels: int = 2, load_path: str = ""): self.adaptor = get_adaptor(model_type) config = AutoConfig.from_pretrained(model_name, num_labels=num_labels) if load_path != "": model = AutoModelForSequenceClassification.from_pretrained( load_path, config=config) else: model = AutoModelForSequenceClassification.from_pretrained( model_name, config=config) super().__init__(model_type, model_name, model) device_number = detect_cuda_device_number() self._pipeline = TextClassificationPipeline(model=self.model, tokenizer=self.tokenizer, device=device_number) self._trainer = TCTrainer(self.model, self.model_type, self.tokenizer, self._device, self.logger)
def __init__( self, model_type: str = "DISTILBERT", model_name: str = "distilbert-base-uncased"): self.adaptor = get_adaptor(model_type) model = AutoModelForMaskedLM.from_pretrained(model_name) super().__init__(model_type, model_name, model) device_number = detect_cuda_device_number() self._pipeline = FillMaskPipeline(model=self.model, tokenizer=self.tokenizer, device=device_number) self._trainer = WPTrainer(self.model, model_type, self.tokenizer, self._device, self.logger)
def __init__(self, model_type="DISTILBERT", model_name="distilbert-base-cased-distilled-squad"): self.adaptor = get_adaptor(model_type) model = AutoModelForQuestionAnswering.from_pretrained(model_name) super().__init__(model_type, model_name, model) device_number = detect_cuda_device_number() self._pipeline = QuestionAnsweringPipeline(model=self.model, tokenizer=self.tokenizer, device=device_number) self._trainer = QATrainer(self.model, model_type, self.tokenizer, self._device, self.logger)
def __init__(self, model_type: str = "BERT", model_name: str = "dslim/bert-base-NER"): self.adaptor = get_adaptor(model_type) model = AutoModelForTokenClassification.from_pretrained(model_name) super().__init__(model_type, model_name, model) device_number = detect_cuda_device_number() self._pipeline = TokenClassificationPipeline(model=self.model, tokenizer=self.tokenizer, device=device_number) self._trainer = TOCTrainer(self.model, model_type, self.tokenizer, self._device, self.logger)
def __init__(self, model_type="BERT", model_name="bert-base-multilingual-cased", num_labels=3): self.adaptor = get_adaptor(model_type) config = AutoConfig.from_pretrained(model_name, num_labels=num_labels) model = AutoModelForSequenceClassification.from_pretrained( model_name, config=config) super().__init__(model_type, model_name, model) device_number = detect_cuda_device_number() self._pipeline = TextClassificationPipeline(model=self.model, tokenizer=self.tokenizer, device=device_number) self._trainer = ABSATrainer(self.model, self.model_type, self.tokenizer, self._device, self.logger)
def __init__(self, model_type="DISTILBERT", model_name="distilbert-base-uncased", num_labels=2): self.adaptor = get_adaptor(model_type) config = AutoConfig.from_pretrained(model_name, num_labels=num_labels) model = self.adaptor.SequenceClassification.from_pretrained( model_name, config=config) tokenizer = self.adaptor.Tokenizer.from_pretrained(model_name) super().__init__(model_type, model_name, model, tokenizer) device_number = detect_cuda_device_number() self._pipeline = TextClassificationPipeline(model=model, tokenizer=tokenizer, device=device_number) self._trainer = TCTrainer(self._model, self.model_type, self._tokenizer, self._device, self.logger)
def __init__(self, model_type: str = "GPT2", model_name: str = "gpt2", load_path: str = ""): self.adaptor = get_adaptor(model_type) if load_path != "": model = AutoModelForCausalLM.from_pretrained(load_path) else: model = AutoModelForCausalLM.from_pretrained(model_name) super().__init__(model_type, model_name, model) device_number = detect_cuda_device_number() self._pipeline = TextGenerationPipeline(model=self.model, tokenizer=self.tokenizer, device=device_number) self._trainer = GENTrainer(self.model, model_type, self.tokenizer, self._device, self.logger)