def test_tc_save(): happy = HappyTextClassification() happy.save("model/") result_before = happy.classify_text("What a great movie") happy = HappyTextClassification(load_path="model/") result_after = happy.classify_text("What a great movie") assert result_before.label == result_after.label
def test_classify_text(): happy_tc = HappyTextClassification( model_type="DISTILBERT", model_name="distilbert-base-uncased-finetuned-sst-2-english") result = happy_tc.classify_text("What a great movie") assert result.label == 'POSITIVE' assert result.score > 0.9
def example_2_1(): happy_tc = HappyTextClassification( model_type="DISTILBERT", model_name="distilbert-base-uncased-finetuned-sst-2-english") result = happy_tc.classify_text("Great movie! 5/5") print( type(result) ) # <class 'happytransformer.happy_text_classification.TextClassificationResult'> print( result ) # TextClassificationResult(label='LABEL_1', score=0.9998761415481567) print(result.label) # LABEL_1