def example_5_1(): happy_toc = HappyTokenClassification(model_type="BERT", model_name="dslim/bert-base-NER") result = happy_toc.classify_token( "My name is Geoffrey and I live in Toronto") print(type(result)) # <class 'list'> print(result[0].word) # Geoffrey print(result[0].entity) # B-PER print(result[0].score) # 0.9988969564437866 print(result[0].index) # 4 print(result[0].start) # 11 print(result[0].end) # 19 print(result[1].word) # Toronto print(result[1].entity) # B-LOC
def test_toc_save(): happy = HappyTokenClassification() happy.save("model/") result_before = happy.classify_token( "My name is Geoffrey and I live in Toronto") happy = HappyTokenClassification(load_path="model/") result_after = happy.classify_token( "My name is Geoffrey and I live in Toronto") assert result_before[0].word == result_after[0].word
def test_classify_text(): happy_toc = HappyTokenClassification(model_type="BERT", model_name="dslim/bert-base-NER") expected_result = [ TokenClassificationResult(word='Geoffrey', score=0.9988969564437866, entity='B-PER', index=4, start=11, end=19), TokenClassificationResult(word='Toronto', score=0.9993201494216919, entity='B-LOC', index=9, start=34, end=41) ] result = happy_toc.classify_token( "My name is Geoffrey and I live in Toronto") assert result == expected_result
def test_classify_text(): happy_toc = HappyTokenClassification(model_type="BERT", model_name="dslim/bert-base-NER") expected_result = [{ 'word': 'Geoffrey', 'score': 0.9988969564437866, 'entity': 'B-PER', 'index': 4, 'start': 11, 'end': 19 }, { 'word': 'Toronto', 'score': 0.9993201494216919, 'entity': 'B-LOC', 'index': 9, 'start': 34, 'end': 41 }] result = happy_toc.classify_token( "My name is Geoffrey and I live in Toronto") assert result == expected_result
def example_5_0(): happy_toc = HappyTokenClassification("BERT", "dslim/bert-base-NER") # default happy_toc_large = HappyTokenClassification( "XLM-ROBERTA", "xlm-roberta-large-finetuned-conll03-english")