예제 #1
0
def main(write_output=True, allow_features=None, flux_type_arg=1, bdry_flux_type_arg=None, extra_discr_args={}):
    from hedge.mesh.generator import make_cylinder_mesh, make_box_mesh
    from hedge.tools import EOCRecorder, to_obj_array
    from math import sqrt, pi
    from analytic_solutions import (
        check_time_harmonic_solution,
        RealPartAdapter,
        SplitComplexAdapter,
        CylindricalFieldAdapter,
        CylindricalCavityMode,
        RectangularWaveguideMode,
        RectangularCavityMode,
    )
    from hedge.models.em import MaxwellOperator

    from hedge.backends import guess_run_context

    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    eoc_rec = EOCRecorder()

    cylindrical = False
    periodic = False

    if cylindrical:
        R = 1
        d = 2
        mode = CylindricalCavityMode(m=1, n=1, p=1, radius=R, height=d, epsilon=epsilon, mu=mu)
        r_sol = CylindricalFieldAdapter(RealPartAdapter(mode))
        c_sol = SplitComplexAdapter(CylindricalFieldAdapter(mode))

        if rcon.is_head_rank:
            mesh = make_cylinder_mesh(radius=R, height=d, max_volume=0.01)
    else:
        if periodic:
            mode = RectangularWaveguideMode(epsilon, mu, (3, 2, 1))
            periodicity = (False, False, True)
        else:
            periodicity = None
        mode = RectangularCavityMode(epsilon, mu, (1, 2, 2))

        if rcon.is_head_rank:
            mesh = make_box_mesh(max_volume=0.001, periodicity=periodicity)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [4, 5, 6]:
        # for order in [1,2,3,4,5,6]:
        extra_discr_args.setdefault("debug", []).extend(["cuda_no_plan", "cuda_dump_kernels"])

        op = MaxwellOperator(epsilon, mu, flux_type=flux_type_arg, bdry_flux_type=bdry_flux_type_arg)

        discr = rcon.make_discretization(mesh_data, order=order, tune_for=op.op_template(), **extra_discr_args)

        from hedge.visualization import VtkVisualizer

        if write_output:
            vis = VtkVisualizer(discr, rcon, "em-%d" % order)

        mode.set_time(0)

        def get_true_field():
            return discr.convert_volume(
                to_obj_array(mode(discr).real.astype(discr.default_scalar_type).copy()), kind=discr.compute_kind
            )

        fields = get_true_field()

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep.runge_kutta import LSRK4TimeStepper

        stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type, rcon=rcon)
        # from hedge.timestep.dumka3 import Dumka3TimeStepper
        # stepper = Dumka3TimeStepper(3, dtype=discr.default_scalar_type, rcon=rcon)

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "maxwell-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from pytools.log import IntervalTimer

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

        from hedge.log import EMFieldGetter, add_em_quantities

        field_getter = EMFieldGetter(discr, op, lambda: fields)
        add_em_quantities(logmgr, op, field_getter)

        logmgr.add_watches(["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

        # timestep loop -------------------------------------------------------
        rhs = op.bind(discr)
        final_time = 0.5e-9

        try:
            from hedge.timestep import times_and_steps

            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr, stepper=stepper, t=t, fields=fields),
            )

            for step, t, dt in step_it:
                if step % 50 == 0 and write_output:
                    sub_timer = vis_timer.start_sub_timer()
                    e, h = op.split_eh(fields)
                    visf = vis.make_file("em-%d-%04d" % (order, step))
                    vis.add_data(
                        visf,
                        [("e", discr.convert_volume(e, kind="numpy")), ("h", discr.convert_volume(h, kind="numpy"))],
                        time=t,
                        step=step,
                    )
                    visf.close()
                    sub_timer.stop().submit()

                fields = stepper(fields, t, dt, rhs)

            mode.set_time(final_time)

            eoc_rec.add_data_point(order, discr.norm(fields - get_true_field()))

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

        if rcon.is_head_rank:
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

    assert eoc_rec.estimate_order_of_convergence()[0, 1] > 6
예제 #2
0
def main(write_output=True, flux_type_arg="upwind"):
    from hedge.tools import mem_checkpoint
    from math import sin, cos, pi, sqrt
    from math import floor

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    def f(x):
        return sin(pi * x)

    def u_analytic(x, el, t):
        return f((-numpy.dot(v, x) / norm_v + t * norm_v))

    def boundary_tagger(vertices, el, face_nr, all_v):
        if numpy.dot(el.face_normals[face_nr], v) < 0:
            return ["inflow"]
        else:
            return ["outflow"]

    dim = 2

    if dim == 1:
        v = numpy.array([1])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(0, 2, 10, periodic=True)
    elif dim == 2:
        v = numpy.array([2, 0])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(boundary_tagger=boundary_tagger)
    elif dim == 3:
        v = numpy.array([0, 0, 1])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_cylinder_mesh, make_ball_mesh, make_box_mesh

            mesh = make_cylinder_mesh(max_volume=0.04,
                                      height=2,
                                      boundary_tagger=boundary_tagger,
                                      periodic=False,
                                      radial_subdivisions=32)
    else:
        raise RuntimeError, "bad number of dimensions"

    norm_v = la.norm(v)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    if dim != 1:
        mesh_data = mesh_data.reordered_by("cuthill")

    discr = rcon.make_discretization(mesh_data, order=4)
    vis_discr = discr

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(vis_discr, rcon, "fld")

    # operator setup ----------------------------------------------------------
    from hedge.data import \
            ConstantGivenFunction, \
            TimeConstantGivenFunction, \
            TimeDependentGivenFunction
    from hedge.models.advection import StrongAdvectionOperator, WeakAdvectionOperator
    op = WeakAdvectionOperator(v,
                               inflow_u=TimeDependentGivenFunction(u_analytic),
                               flux_type=flux_type_arg)

    u = discr.interpolate_volume_function(lambda x, el: u_analytic(x, el, 0))

    # timestep setup ----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()

    if rcon.is_head_rank:
        print "%d elements" % len(discr.mesh.elements)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "advection.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    from hedge.log import Integral, LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(Integral(u_getter, discr, name="int_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=3,
                                  logmgr=logmgr,
                                  max_dt_getter=lambda t: op.estimate_timestep(
                                      discr, stepper=stepper, t=t, fields=u))

        for step, t, dt in step_it:
            if step % 5 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [
                    ("u", discr.convert_volume(u, kind="numpy")),
                ],
                             time=t,
                             step=step)
                visf.close()

            u = stepper(u, t, dt, rhs)

        true_u = discr.interpolate_volume_function(
            lambda x, el: u_analytic(x, el, t))
        print discr.norm(u - true_u)
        assert discr.norm(u - true_u) < 1e-2
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
예제 #3
0
def main(write_output=True, flux_type_arg="upwind"):
    from hedge.tools import mem_checkpoint
    from math import sin, cos, pi, sqrt
    from math import floor

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    def f(x):
        return sin(pi*x)

    def u_analytic(x, el, t):
        return f((-numpy.dot(v, x)/norm_v+t*norm_v))

    def boundary_tagger(vertices, el, face_nr, all_v):
        if numpy.dot(el.face_normals[face_nr], v) < 0:
            return ["inflow"]
        else:
            return ["outflow"]

    dim = 2

    if dim == 1:
        v = numpy.array([1])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(0, 2, 10, periodic=True)
    elif dim == 2:
        v = numpy.array([2,0])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(boundary_tagger=boundary_tagger)
    elif dim == 3:
        v = numpy.array([0,0,1])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_cylinder_mesh, make_ball_mesh, make_box_mesh

            mesh = make_cylinder_mesh(max_volume=0.04, height=2, boundary_tagger=boundary_tagger,
                    periodic=False, radial_subdivisions=32)
    else:
        raise RuntimeError, "bad number of dimensions"

    norm_v = la.norm(v)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    if dim != 1:
        mesh_data = mesh_data.reordered_by("cuthill")

    discr = rcon.make_discretization(mesh_data, order=4)
    vis_discr = discr

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(vis_discr, rcon, "fld")

    # operator setup ----------------------------------------------------------
    from hedge.data import \
            ConstantGivenFunction, \
            TimeConstantGivenFunction, \
            TimeDependentGivenFunction
    from hedge.models.advection import StrongAdvectionOperator, WeakAdvectionOperator
    op = WeakAdvectionOperator(v, 
            inflow_u=TimeDependentGivenFunction(u_analytic),
            flux_type=flux_type_arg)

    u = discr.interpolate_volume_function(lambda x, el: u_analytic(x, el, 0))

    # timestep setup ----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()

    if rcon.is_head_rank:
        print "%d elements" % len(discr.mesh.elements)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "advection.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    from hedge.log import Integral, LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(Integral(u_getter, discr, name="int_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=3, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=u))

        for step, t, dt in step_it:
            if step % 5 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [ 
                    ("u", discr.convert_volume(u, kind="numpy")), 
                    ], time=t, step=step)
                visf.close()

            u = stepper(u, t, dt, rhs)

        true_u = discr.interpolate_volume_function(lambda x, el: u_analytic(x, el, t))
        print discr.norm(u-true_u)
        assert discr.norm(u-true_u) < 1e-2
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
예제 #4
0
def main(write_output=True,
         allow_features=None,
         flux_type_arg=1,
         bdry_flux_type_arg=None,
         extra_discr_args={}):
    from hedge.mesh.generator import make_cylinder_mesh, make_box_mesh
    from hedge.tools import EOCRecorder, to_obj_array
    from math import sqrt, pi  # noqa
    from analytic_solutions import (  # noqa
        RealPartAdapter, SplitComplexAdapter, CylindricalFieldAdapter,
        CylindricalCavityMode, RectangularWaveguideMode, RectangularCavityMode)
    from hedge.models.em import MaxwellOperator

    logging.basicConfig(level=logging.DEBUG)

    from hedge.backends import guess_run_context
    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    eoc_rec = EOCRecorder()

    cylindrical = False
    periodic = False

    if cylindrical:
        R = 1
        d = 2
        mode = CylindricalCavityMode(m=1,
                                     n=1,
                                     p=1,
                                     radius=R,
                                     height=d,
                                     epsilon=epsilon,
                                     mu=mu)
        # r_sol = CylindricalFieldAdapter(RealPartAdapter(mode))
        # c_sol = SplitComplexAdapter(CylindricalFieldAdapter(mode))

        if rcon.is_head_rank:
            mesh = make_cylinder_mesh(radius=R, height=d, max_volume=0.01)
    else:
        if periodic:
            mode = RectangularWaveguideMode(epsilon, mu, (3, 2, 1))
            periodicity = (False, False, True)
        else:
            periodicity = None
        mode = RectangularCavityMode(epsilon, mu, (1, 2, 2))

        if rcon.is_head_rank:
            mesh = make_box_mesh(max_volume=0.001, periodicity=periodicity)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [4, 5, 6]:
        #for order in [1,2,3,4,5,6]:
        extra_discr_args.setdefault("debug", []).extend(
            ["cuda_no_plan", "cuda_dump_kernels"])

        op = MaxwellOperator(epsilon,
                             mu,
                             flux_type=flux_type_arg,
                             bdry_flux_type=bdry_flux_type_arg)

        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         tune_for=op.op_template(),
                                         **extra_discr_args)

        from hedge.visualization import VtkVisualizer
        if write_output:
            vis = VtkVisualizer(discr, rcon, "em-%d" % order)

        mode.set_time(0)

        def get_true_field():
            return discr.convert_volume(to_obj_array(
                mode(discr).real.astype(discr.default_scalar_type).copy()),
                                        kind=discr.compute_kind)

        fields = get_true_field()

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep.runge_kutta import LSRK4TimeStepper
        stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type, rcon=rcon)
        #from hedge.timestep.dumka3 import Dumka3TimeStepper
        #stepper = Dumka3TimeStepper(3, dtype=discr.default_scalar_type, rcon=rcon)

        # {{{ diagnostics setup

        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "maxwell-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from pytools.log import IntervalTimer
        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

        from hedge.log import EMFieldGetter, add_em_quantities
        field_getter = EMFieldGetter(discr, op, lambda: fields)
        add_em_quantities(logmgr, op, field_getter)

        logmgr.add_watches(
            ["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

        # }}}

        # {{{ timestep loop

        rhs = op.bind(discr)
        final_time = 0.5e-9

        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, fields=fields))

            for step, t, dt in step_it:
                if step % 50 == 0 and write_output:
                    sub_timer = vis_timer.start_sub_timer()
                    e, h = op.split_eh(fields)
                    visf = vis.make_file("em-%d-%04d" % (order, step))
                    vis.add_data(visf, [
                        ("e", discr.convert_volume(e, kind="numpy")),
                        ("h", discr.convert_volume(h, kind="numpy")),
                    ],
                                 time=t,
                                 step=step)
                    visf.close()
                    sub_timer.stop().submit()

                fields = stepper(fields, t, dt, rhs)

            mode.set_time(final_time)

            eoc_rec.add_data_point(order,
                                   discr.norm(fields - get_true_field()))

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

        if rcon.is_head_rank:
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

        # }}}

    assert eoc_rec.estimate_order_of_convergence()[0, 1] > 6