예제 #1
0
    def do_for_file(self, file_path, output_folder="output"):
        org_image = util.load_image(file_path)

        filename, extension = os.path.splitext(os.path.basename(file_path))
        output_folder += "/" + self.name + "/"
        util.save_image(output_folder + filename + extension, org_image)

        #Esta linea para solo blanco y negro
        org_image = util.convert_rgb_to_y(org_image)
        util.save_image(output_folder + filename + "_y" + extension, org_image)

        if len(org_image.shape) >= 3 and org_image.shape[2] == 3 and self.channels == 1:
            input_y_image = util.convert_rgb_to_y(org_image)
            scaled_image = util.resize_image_by_pil(input_y_image, self.scale, resampling_method=self.resampling_method)
            util.save_image(output_folder + filename + "_bicubic_y" + extension, scaled_image)
            output_y_image = self.do(input_y_image)
            util.save_image(output_folder + filename + "_result_y" + extension, output_y_image)

            scaled_ycbcr_image = util.convert_rgb_to_ycbcr(
                util.resize_image_by_pil(org_image, self.scale, self.resampling_method))
            image = util.convert_y_and_cbcr_to_rgb(output_y_image, scaled_ycbcr_image[:, :, 1:3])

        else:
            scaled_image = util.resize_image_by_pil(org_image, self.scale, resampling_method=self.resampling_method)
            util.save_image(output_folder + filename + "_bicubic_y" + extension, scaled_image)
            image = self.do(org_image)
            util.save_image(output_folder + filename + "_residual_y" + extension, image)
            final_image = scaled_image + image



        util.save_image(output_folder + filename + "_result" + extension, final_image)
예제 #2
0
def build_input_image(image,
                      width=0,
                      height=0,
                      channels=1,
                      scale=1,
                      alignment=0,
                      convert_ycbcr=True):
    """
    build input image from file.
    crop, adjust the image alignment for the scale factor, resize, convert color space.
    """

    if width != 0 and height != 0:
        if image.shape[0] != height or image.shape[1] != width:
            x = (image.shape[1] - width) // 2
            y = (image.shape[0] - height) // 2
            image = image[y:y + height, x:x + width, :]

    if alignment > 1:
        image = util.set_image_alignment(image, alignment)

    if channels == 1 and image.shape[2] == 3:
        if convert_ycbcr:
            image = util.convert_rgb_to_y(image)
    else:
        if convert_ycbcr:
            image = util.convert_rgb_to_ycbcr(image)

    if scale != 1:
        image = util.resize_image_by_pil(image, 1.0 / scale)

    return image
예제 #3
0
    def do_for_evaluate_with_output(self, file_path, output_directory, print_console=False):

        filename, extension = os.path.splitext(file_path)
        output_directory += "/" + self.name + "/"
        util.make_dir(output_directory)

        true_image = util.set_image_alignment(util.load_image(file_path, print_console=False), self.scale)
        input_image = util.resize_image_by_pil(true_image, 1.0/ self.scale, resampling_method=self.resampling_method)
        input_bicubic_image = util.resize_image_by_pil(input_image, self.scale, resampling_method=self.resampling_method)
        util.save_image(output_directory + filename + "_input_bicubic" + extension, input_bicubic_image)

        if true_image.shape[2] == 3 and self.channels == 1:

            # for color images
            input_y_image = loader.build_input_image(true_image, channels=self.channels, scale=self.scale,
                                                     alignment=self.scale, convert_ycbcr=True)
            input_bicubic_y_image = util.resize_image_by_pil(input_y_image, self.scale,
                                                             resampling_method=self.resampling_method)

            true_ycbcr_image = util.convert_rgb_to_ycbcr(true_image)

            output_y_image = self.do(input_y_image, input_bicubic_y_image)
            psnr, ssim = util.compute_psnr_and_ssim(true_ycbcr_image[:, :, 0:1], output_y_image,
                                                    border_size=self.psnr_calc_border_size)
            loss_image = util.get_loss_image(true_ycbcr_image[:, :, 0:1], output_y_image,
                                             border_size=self.psnr_calc_border_size)

            output_color_image = util.convert_y_and_cbcr_to_rgb(output_y_image, true_ycbcr_image[:, :, 1:3])

            util.save_image(output_directory + file_path, true_image)
            util.save_image(output_directory + filename + "_input" + extension, input_y_image)
            util.save_image(output_directory + filename + "_input_bicubic_y" + extension, input_bicubic_y_image)
            util.save_image(output_directory + filename + "_true_y" + extension, true_ycbcr_image[:, :, 0:1])
            util.save_image(output_directory + filename + "_result" + extension, output_y_image)
            util.save_image(output_directory + filename + "_result_c" + extension, output_color_image)
            util.save_image(output_directory + filename + "_loss" + extension, loss_image)

        elif true_image.shape[2] == 1 and self.channels == 1:

            # for monochrome images
            input_image = loader.build_input_image(true_image, channels=self.channels, scale=self.scale,
                                                   alignment=self.scale)
            input_bicubic_y_image = util.resize_image_by_pil(input_image, self.scale,
                                                             resampling_method=self.resampling_method)
            output_image = self.do(input_image, input_bicubic_y_image)
            psnr, ssim = util.compute_psnr_and_ssim(true_image, output_image, border_size=self.psnr_calc_border_size)
            util.save_image(output_directory + file_path, true_image)
            util.save_image(output_directory + filename + "_result" + extension, output_image)
        else:
            return None, None

        if print_console:
            print("[%s] PSNR:%f, SSIM:%f" % (filename, psnr, ssim))

        return psnr, ssim
예제 #4
0
 def doframe(self, org_image):
     input_y_image = util.convert_rgb_to_y(org_image)
     scaled_image = util.resize_image_by_pil(
         input_y_image,
         self.scale,
         resampling_method=self.resampling_method)
     output_y_image = self.do(input_y_image)
     scaled_ycbcr_image = util.convert_rgb_to_ycbcr(
         util.resize_image_by_pil(org_image, self.scale,
                                  self.resampling_method))
     return util.convert_y_and_cbcr_to_rgb(output_y_image,
                                           scaled_ycbcr_image[:, :, 1:3])
예제 #5
0
    def predict_im(self, org_image):

        if len(org_image.shape
               ) >= 3 and org_image.shape[2] == 3 and self.channels == 1:
            input_y_image = util.convert_rgb_to_y(org_image)
            output_y_image = self.do(input_y_image)
            scaled_ycbcr_image = util.convert_rgb_to_ycbcr(
                util.resize_image_by_pil(org_image, self.scale,
                                         self.resampling_method))
            image = util.convert_y_and_cbcr_to_rgb(
                output_y_image, scaled_ycbcr_image[:, :, 1:3])
        else:
            image = self.do(org_image)
        return image
예제 #6
0
def do_util(src, dest):
    with Timer('util: load'):
        inp = util.load_image(src)
    with Timer('util: resize'):
        resized = util.resize_image_by_pil(inp, 2)
    with Timer('util: extract Y'):
        only_y = util.convert_rgb_to_y(inp)
    only_y = util.convert_rgb_to_y(resized)  # simulate upscale
    with Timer('util: rgb => YCbCr'):
        scaled_ycbcr_image = util.convert_rgb_to_ycbcr(resized)
    with Timer('util: Y + YCbCr -> rgb'):
        image = util.convert_y_and_cbcr_to_rgb(only_y, scaled_ycbcr_image[:, :,
                                                                          1:3])
    with Timer('util: save'):
        util.save_image(dest, image)
    def do_for_evaluate(self, file_path, output_directory="output", output=True, print_console=True):

        filename, extension = os.path.splitext(file_path)
        output_directory += "/"
        true_image = util.set_image_alignment(util.load_image(file_path), self.scale)

        if true_image.shape[2] == 3 and self.channels == 1:
            input_y_image = loader.build_input_image(true_image, channels=self.channels, scale=self.scale,
                                                     alignment=self.scale, convert_ycbcr=True, jpeg_mode=self.jpeg_mode)
            # for color images
            if output:
                input_bicubic_y_image = util.resize_image_by_pil(input_y_image, self.scale)
                true_ycbcr_image = util.convert_rgb_to_ycbcr(true_image, jpeg_mode=self.jpeg_mode)

                output_y_image = self.do(input_y_image, input_bicubic_y_image)
                mse = util.compute_mse(true_ycbcr_image[:, :, 0:1], output_y_image, border_size=self.scale)
                loss_image = util.get_loss_image(true_ycbcr_image[:, :, 0:1], output_y_image, border_size=self.scale)

                output_color_image = util.convert_y_and_cbcr_to_rgb(output_y_image, true_ycbcr_image[:, :, 1:3],
                                                                    jpeg_mode=self.jpeg_mode)

                util.save_image(output_directory + file_path, true_image)
                util.save_image(output_directory + filename + "_input" + extension, input_y_image)
                util.save_image(output_directory + filename + "_input_bicubic" + extension, input_bicubic_y_image)
                util.save_image(output_directory + filename + "_true_y" + extension, true_ycbcr_image[:, :, 0:1])
                util.save_image(output_directory + filename + "_result" + extension, output_y_image)
                util.save_image(output_directory + filename + "_result_c" + extension, output_color_image)
                util.save_image(output_directory + filename + "_loss" + extension, loss_image)
            else:
                true_y_image = util.convert_rgb_to_y(true_image, jpeg_mode=self.jpeg_mode)
                output_y_image = self.do(input_y_image)
                mse = util.compute_mse(true_y_image, output_y_image, border_size=self.scale)

        elif true_image.shape[2] == 1 and self.channels == 1:

            # for monochrome images
            input_image = loader.build_input_image(true_image, channels=self.channels, scale=self.scale, alignment=self.scale)
            output_image = self.do(input_image)
            mse = util.compute_mse(true_image, output_image, border_size=self.scale)
            if output:
                util.save_image(output_directory + file_path, true_image)
                util.save_image(output_directory + filename + "_result" + extension, output_image)

        if print_console:
            print("MSE:%f PSNR:%f" % (mse, util.get_psnr(mse)))
        return mse
예제 #8
0
    def upscale(self, org_image):
        assert len(org_image.shape
                   ) >= 3 and org_image.shape[2] == 3 and self.channels == 1

        input_y_image = util.convert_rgb_to_y(org_image)

        big_blurry_input_image = util.resize_image_by_pil(
            org_image, self.scale)
        big_blurry_input_ycbcr_image = util.convert_rgb_to_ycbcr(
            big_blurry_input_image)
        bbi_input_y_image, bbi_input_cbcr_image = util.convert_ycbcr_to_y_cbcr(
            big_blurry_input_ycbcr_image)

        output_y_image = self.do(input_y_image, bbi_input_y_image)

        output_image = util.convert_y_and_cbcr_to_rgb(output_y_image,
                                                      bbi_input_cbcr_image)
        return output_image
예제 #9
0
    def do_for_file(self, file_path, output_folder="output"):

        filename, extension = os.path.splitext(file_path)
        output_folder += "/"
        org_image = util.load_image(file_path)
        util.save_image(output_folder + file_path, org_image)

        if len(org_image.shape
               ) >= 3 and org_image.shape[2] == 3 and self.channels == 1:
            input_y_image = util.convert_rgb_to_y(org_image,
                                                  jpeg_mode=self.jpeg_mode)
            scaled_image = util.resize_image_by_pil(
                input_y_image,
                self.scale,
                resampling_method=self.resampling_method)
            util.save_image(
                output_folder + filename + "_bicubic_y" + extension,
                scaled_image)
            output_y_image = self.do(input_y_image)
            util.save_image(output_folder + filename + "_result_y" + extension,
                            output_y_image)

            scaled_ycbcr_image = util.convert_rgb_to_ycbcr(
                util.resize_image_by_pil(org_image, self.scale,
                                         self.resampling_method),
                jpeg_mode=self.jpeg_mode)
            image = util.convert_y_and_cbcr_to_rgb(output_y_image,
                                                   scaled_ycbcr_image[:, :,
                                                                      1:3],
                                                   jpeg_mode=self.jpeg_mode)
        else:
            scaled_image = util.resize_image_by_pil(
                org_image,
                self.scale,
                resampling_method=self.resampling_method)
            util.save_image(
                output_folder + filename + "_bicubic_y" + extension,
                scaled_image)
            image = self.do(org_image)

        util.save_image(output_folder + filename + "_result" + extension,
                        image)
예제 #10
0
    def do_for_file(self, file_path, output_folder="output"):
        org_image = cv2.imread(file_path)
        assert len(org_image.shape
                   ) >= 3 and org_image.shape[2] == 3 and self.channels == 1

        input_y_image = util.convert_rgb_to_y(org_image)

        big_blurry_input_image = util.resize_image_by_pil(
            org_image, self.scale)
        big_blurry_input_ycbcr_image = util.convert_rgb_to_ycbcr(
            big_blurry_input_image)
        bbi_input_y_image, bbi_input_cbcr_image = util.convert_ycbcr_to_y_cbcr(
            big_blurry_input_ycbcr_image)

        output_y_image = self.do(input_y_image, bbi_input_y_image)

        output_image = util.convert_y_and_cbcr_to_rgb(output_y_image,
                                                      bbi_input_cbcr_image)

        target_path = os.path.basename(file_path)
        cv2.imwrite(os.path.join(output_folder, target_path), output_image)
예제 #11
0
    def do_for_file(self, file_path, output_folder="output"):

        org_image = util.load_image(file_path)

        filename, extension = os.path.splitext(os.path.basename(file_path))
        output_folder += "/" + self.name + "/"
        # util.save_image(output_folder + filename + extension, org_image)

        if os.path.exists(output_folder + filename + extension):
            print("File already exists in the target directory")
            return

        if org_image.shape[0] + org_image.shape[1] >= 1024:
            print("Image is too big: ", org_image.shape)
            image = org_image
        elif len(org_image.shape
                 ) >= 3 and org_image.shape[2] == 3 and self.channels == 1:
            input_y_image = util.convert_rgb_to_y(org_image)
            # scaled_image = util.resize_image_by_pil(input_y_image, self.scale, resampling_method=self.resampling_method)
            # util.save_image(output_folder + filename + "_bicubic_y" + extension, scaled_image)
            output_y_image = self.do(input_y_image)
            # util.save_image(output_folder + filename + "_result_y" + extension, output_y_image)

            scaled_ycbcr_image = util.convert_rgb_to_ycbcr(
                util.resize_image_by_pil(org_image, self.scale,
                                         self.resampling_method))
            image = util.convert_y_and_cbcr_to_rgb(
                output_y_image, scaled_ycbcr_image[:, :, 1:3])
        else:
            # scaled_image = util.resize_image_by_pil(org_image, self.scale, resampling_method=self.resampling_method)
            # util.save_image(output_folder + filename + "_bicubic_y" + extension, scaled_image)
            image = self.do(org_image)

        # util.save_image(output_folder + filename + "_result" + extension, image)
        file_path = output_folder + filename + extension
        util.save_image(file_path, image)
        print("Saved at ", file_path)
예제 #12
0
def load_and_evaluate_tflite_graph(
    output_dir,
    data_dir,
    test_data,
    model_path=os.path.join(os.getcwd(),
                            'model_to_freeze/converted_model.tflite')):
    # https://stackoverflow.com/questions/50443411/how-to-load-a-tflite-model-in-script
    # https://www.tensorflow.org/lite/convert/python_api#tensorflow_lite_python_interpreter_
    output_directory = output_dir
    output_directory += "/" + "tflite" + "/"
    util.make_dir(output_directory)

    test_filepaths = util.get_files_in_directory(data_dir + "/" + test_data)
    total_psnr = total_ssim = total_time = 0

    # Load TFLite model and allocate tensors.
    interpreter = tf.lite.Interpreter(model_path=model_path)
    # interpreter = tf.contrib.lite.Interpreter(model_path=model_path)
    interpreter.allocate_tensors()

    # Get input and output tensors.
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()

    for file_path in test_filepaths:
        # split filename from extension
        filename, extension = os.path.splitext(file_path)

        # prepare true image
        true_image = util.set_image_alignment(
            util.load_image(file_path, print_console=False), FLAGS.scale)

        # start the timer
        if true_image.shape[2] == 3 and FLAGS.channels == 1:
            # prepare input and ground truth images
            input_y_image = loader.build_input_image(true_image,
                                                     channels=FLAGS.channels,
                                                     scale=FLAGS.scale,
                                                     alignment=FLAGS.scale,
                                                     convert_ycbcr=True)
            input_bicubic_y_image = util.resize_image_by_pil(
                input_y_image,
                FLAGS.scale,
                resampling_method=FLAGS.resampling_method)
            true_ycbcr_image = util.convert_rgb_to_ycbcr(true_image)

            # pass inputs through the model (need to recast and reshape inputs)
            input_y_image_reshaped = input_y_image.astype('float32')
            input_y_image_reshaped = input_y_image_reshaped.reshape(
                1, input_y_image.shape[0], input_y_image.shape[1],
                FLAGS.channels)

            input_bicubic_y_image_reshaped = input_bicubic_y_image.astype(
                'float32')
            input_bicubic_y_image_reshaped = input_bicubic_y_image_reshaped.reshape(
                1, input_bicubic_y_image.shape[0],
                input_bicubic_y_image.shape[1], FLAGS.channels)

            interpreter.set_tensor(input_details[0]['index'],
                                   input_y_image_reshaped)  # pass x
            interpreter.set_tensor(input_details[1]['index'],
                                   input_bicubic_y_image_reshaped)  # pass x2

            start = time.time()
            interpreter.invoke()
            end = time.time()

            output_y_image = interpreter.get_tensor(
                output_details[0]['index'])  # get y
            # resize the output into an image
            output_y_image = output_y_image.reshape(output_y_image.shape[1],
                                                    output_y_image.shape[2],
                                                    FLAGS.channels)

            # calculate psnr and ssim for the output
            psnr, ssim = util.compute_psnr_and_ssim(
                true_ycbcr_image[:, :, 0:1],
                output_y_image,
                border_size=FLAGS.psnr_calc_border_size)

            # get the loss image
            loss_image = util.get_loss_image(
                true_ycbcr_image[:, :, 0:1],
                output_y_image,
                border_size=FLAGS.psnr_calc_border_size)

            # get output color image
            output_color_image = util.convert_y_and_cbcr_to_rgb(
                output_y_image, true_ycbcr_image[:, :, 1:3])

            # save all images
            util.save_image(output_directory + file_path, true_image)
            util.save_image(output_directory + filename + "_input" + extension,
                            input_y_image)
            util.save_image(
                output_directory + filename + "_input_bicubic" + extension,
                input_bicubic_y_image)
            util.save_image(
                output_directory + filename + "_true_y" + extension,
                true_ycbcr_image[:, :, 0:1])
            util.save_image(
                output_directory + filename + "_result" + extension,
                output_y_image)
            util.save_image(
                output_directory + filename + "_result_c" + extension,
                output_color_image)
            util.save_image(output_directory + filename + "_loss" + extension,
                            loss_image)
        elapsed_time = end - start
        total_psnr += psnr
        total_ssim += ssim
        total_time += elapsed_time
    testSize = len(test_filepaths)
    print("Model Average [%s] PSNR:%f, SSIM:%f, Elapsed Time:%f" %
          (test_data, total_psnr / testSize, total_ssim / testSize,
           total_time / testSize))
예제 #13
0
    def do_for_evaluate_with_output(self,
                                    file_path,
                                    output_directory=None,
                                    print_console=False):
        true_image = util.set_image_alignment(
            util.load_image(file_path, print_console=False), self.scale)

        # Assuming the image is color
        assert true_image.shape[
            2] == 3 and self.channels == 1, "Only 3-channel images are supported"

        input_image = loader.build_input_image(true_image,
                                               scale=self.scale,
                                               alignment=self.scale)

        input_y_image = util.convert_rgb_to_y(input_image)
        true_y_image = util.convert_rgb_to_y(true_image)
        input_bicubic_y_image = util.resize_image_by_pil(
            input_y_image,
            self.scale,
            resampling_method=self.resampling_method)

        output_y_image = self.do(input_y_image, input_bicubic_y_image)

        psnr, ssim = util.compute_psnr_and_ssim(
            true_y_image,
            output_y_image,
            border_size=self.psnr_calc_border_size)

        if output_directory:
            true_ycbcr_image = util.convert_rgb_to_ycbcr(true_image)
            _, true_cbcr = util.convert_ycbcr_to_y_cbcr(true_ycbcr_image)
            output_color_image = util.convert_y_and_cbcr_to_rgb(
                output_y_image, true_cbcr)

            loss_image = util.get_loss_image(
                true_y_image,
                output_y_image,
                border_size=self.psnr_calc_border_size)

            filename, extension = os.path.splitext(file_path)
            output_directory += "/" + self.name + "/"
            util.make_dir(output_directory)

            util.save_image(output_directory + file_path, true_image)
            util.save_image(output_directory + filename + "_input" + extension,
                            input_y_image)
            util.save_image(
                output_directory + filename + "_input_bicubic" + extension,
                input_bicubic_y_image)
            util.save_image(
                output_directory + filename + "_true_y" + extension,
                true_ycbcr_image[:, :, 0:1])
            util.save_image(
                output_directory + filename + "_result" + extension,
                output_y_image)
            util.save_image(
                output_directory + filename + "_result_c" + extension,
                output_color_image)
            util.save_image(output_directory + filename + "_loss" + extension,
                            loss_image)

        if print_console:
            print("[%s] PSNR:%f, SSIM:%f" % (filename, psnr, ssim))

        return psnr, ssim