def build_image_set(file_path, channels=1, scale=1, convert_ycbcr=True, resampling_method="bicubic", print_console=True): true_image = util.set_image_alignment( util.load_image(file_path, print_console=print_console), scale) if channels == 1 and true_image.shape[2] == 3 and convert_ycbcr: true_image = util.convert_rgb_to_y(true_image) input_image = util.resize_image_by_pil(true_image, 1.0 / scale, resampling_method=resampling_method) input_interpolated_image = util.resize_image_by_pil( input_image, scale, resampling_method=resampling_method) return input_image, input_interpolated_image, true_image
def do_for_file(self, file_path, output_folder="output"): filename, extension = os.path.splitext(file_path) output_folder += "/" org_image = util.load_image(file_path) util.save_image(output_folder + file_path, org_image) if len(org_image.shape ) >= 3 and org_image.shape[2] == 3 and self.channels == 1: input_y_image = util.convert_rgb_to_y(org_image, jpeg_mode=self.jpeg_mode) scaled_image = util.resize_image_by_pil( input_y_image, self.scale, resampling_method=self.resampling_method) util.save_image( output_folder + filename + "_bicubic_y" + extension, scaled_image) output_y_image = self.do(input_y_image) util.save_image(output_folder + filename + "_result_y" + extension, output_y_image) scaled_ycbcr_image = util.convert_rgb_to_ycbcr( util.resize_image_by_pil(org_image, self.scale, self.resampling_method), jpeg_mode=self.jpeg_mode) image = util.convert_y_and_cbcr_to_rgb(output_y_image, scaled_ycbcr_image[:, :, 1:3], jpeg_mode=self.jpeg_mode) else: scaled_image = util.resize_image_by_pil( org_image, self.scale, resampling_method=self.resampling_method) util.save_image( output_folder + filename + "_bicubic_y" + extension, scaled_image) image = self.do(org_image) util.save_image(output_folder + filename + "_result" + extension, image)
def evaluate_bicubic(self, file_path, print_console=False): true_image = util.set_image_alignment(util.load_image(file_path, print_console=False), self.scale) if true_image.shape[2] == 3 and self.channels == 1: input_image = loader.build_input_image(true_image, channels=self.channels, scale=self.scale, alignment=self.scale, convert_ycbcr=True) true_image = util.convert_rgb_to_y(true_image) elif true_image.shape[2] == 1 and self.channels == 1: input_image = loader.build_input_image(true_image, channels=self.channels, scale=self.scale, alignment=self.scale) else: return None, None input_bicubic_image = util.resize_image_by_pil(input_image, self.scale, resampling_method=self.resampling_method) psnr, ssim = util.compute_psnr_and_ssim(true_image, input_bicubic_image, border_size=self.psnr_calc_border_size) if print_console: print("PSNR:%f, SSIM:%f" % (psnr, ssim)) return psnr, ssim
def do_for_file(self, file_path, output_folder="output"): org_image = util.load_image(file_path) filename, extension = os.path.splitext(os.path.basename(file_path)) output_folder += "/" + self.name + "/" util.save_image(output_folder + filename + extension, org_image) if len(org_image.shape ) >= 3 and org_image.shape[2] == 3 and self.channels == 1: input_y_image = util.convert_rgb_to_y(org_image) util.save_image(output_folder + filename + '_input_y' + extension, input_y_image) scaled_image = util.resize_image_by_pil( input_y_image, self.scale, resampling_method=self.resampling_method) util.save_image( output_folder + filename + "_bicubic_y" + extension, scaled_image) output_y_image = self.do(input_y_image) util.save_image(output_folder + filename + "_result_y" + extension, output_y_image) scaled_ycbcr_image = util.convert_rgb_to_ycbcr( util.resize_image_by_pil(org_image, self.scale, self.resampling_method)) _, scaled_cbcr = util.convert_ycbcr_to_y_cbcr(scaled_ycbcr_image) image = util.convert_y_and_cbcr_to_rgb(output_y_image, scaled_cbcr) else: scaled_image = util.resize_image_by_pil( org_image, self.scale, resampling_method=self.resampling_method) util.save_image( output_folder + filename + "_bicubic_y" + extension, scaled_image) image = self.do(org_image) util.save_image(output_folder + filename + "_result" + extension, image)
def main(not_parsed_args): if len(not_parsed_args) > 1: print("Unknown args:%s" % not_parsed_args) exit() print("Building Y channel data...") training_filenames = util.get_files_in_directory(FLAGS.data_dir + "/" + FLAGS.dataset + "/") target_dir = FLAGS.data_dir + "/" + FLAGS.dataset + "_y/" util.make_dir(target_dir) for file_path in training_filenames: org_image = util.load_image(file_path) if org_image.shape[2] == 3: org_image = util.convert_rgb_to_y(org_image) filename = os.path.basename(file_path) filename, extension = os.path.splitext(filename) new_filename = target_dir + filename util.save_image(new_filename + ".bmp", org_image)
def do_for_file(self, file_path, output_folder="output"): org_image = util.load_image(file_path) filename, extension = os.path.splitext(os.path.basename(file_path)) output_folder += "/" + self.name + "/" # util.save_image(output_folder + filename + extension, org_image) if os.path.exists(output_folder + filename + extension): print("File already exists in the target directory") return if org_image.shape[0] + org_image.shape[1] >= 1024: print("Image is too big: ", org_image.shape) image = org_image elif len(org_image.shape ) >= 3 and org_image.shape[2] == 3 and self.channels == 1: input_y_image = util.convert_rgb_to_y(org_image) # scaled_image = util.resize_image_by_pil(input_y_image, self.scale, resampling_method=self.resampling_method) # util.save_image(output_folder + filename + "_bicubic_y" + extension, scaled_image) output_y_image = self.do(input_y_image) # util.save_image(output_folder + filename + "_result_y" + extension, output_y_image) scaled_ycbcr_image = util.convert_rgb_to_ycbcr( util.resize_image_by_pil(org_image, self.scale, self.resampling_method)) image = util.convert_y_and_cbcr_to_rgb( output_y_image, scaled_ycbcr_image[:, :, 1:3]) else: # scaled_image = util.resize_image_by_pil(org_image, self.scale, resampling_method=self.resampling_method) # util.save_image(output_folder + filename + "_bicubic_y" + extension, scaled_image) image = self.do(org_image) # util.save_image(output_folder + filename + "_result" + extension, image) file_path = output_folder + filename + extension util.save_image(file_path, image) print("Saved at ", file_path)
def main(not_parsed_args): if len(not_parsed_args) > 1: print("Unknown args:%s" % not_parsed_args) exit() print("Building x%d augmented data." % FLAGS.augment_level) training_filenames = util.get_files_in_directory( "/media/data3/ww/sr_data/DIV2K_train_HR/") target_dir = "/media/data3/ww/sr_data/DIV2K_train_HR" + ( "_%d/" % FLAGS.augment_level) util.make_dir(target_dir) writer = tf.python_io.TFRecordWriter("DIV2K_org.tfrecords") writer2 = tf.python_io.TFRecordWriter("DIV2K_aug.tfrecords") for file_path in training_filenames: org_image = util.load_image(file_path) org_raw = org_image.tobytes() #convert image to bytes train_object = tf.train.Example(features=tf.train.Features( feature={ 'org_raw': tf.train.Feature(bytes_list=tf.train.BytesList( value=[org_raw])) })) writer.write(train_object.SerializeToString()) ud_image = np.flipud(org_image) ud_raw = ud_image.tobytes() # convert image to bytes train_object2 = tf.train.Example(features=tf.train.Features( feature={ 'org_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[ud_raw])) })) writer2.write(train_object2.SerializeToString()) writer.close()
def load_random_patch(self, filename): image = util.load_image(filename, print_console=False) height, width = image.shape[0:2] load_batch_size = self.batch_image_size * self.scale if height < load_batch_size or width < load_batch_size: print("Error: %s should have more than %d x %d size." % (filename, load_batch_size, load_batch_size)) return None if height == load_batch_size: y = 0 else: y = random.randrange(height - load_batch_size) if width == load_batch_size: x = 0 else: x = random.randrange(width - load_batch_size) image = image[y:y + load_batch_size, x:x + load_batch_size, :] image = build_input_image(image, channels=self.channels, convert_ycbcr=True) return image
def do_for_evaluate_with_output(self, file_path, output_directory, print_console=False): filename, extension = os.path.splitext(file_path) output_directory += "/" + self.name + "/" util.make_dir(output_directory) true_image = util.set_image_alignment( util.load_image(file_path, print_console=False), self.scale) if true_image.shape[2] == 3 and self.channels == 3: # for color images input_image = util.build_input_image(true_image, scale=self.scale, alignment=self.scale) input_bicubic_image = util.resize_image_by_pil( input_image, self.scale, resampling_method=self.resampling_method) output_image, spend_time = self.do(input_image) # SR SR_y = eva.convert_rgb_to_y(output_image) HR_y = eva.convert_rgb_to_y(true_image) psnr_predicted = eva.PSNR(np.uint8(HR_y), np.uint8(SR_y), shave_border=self.psnr_calc_border_size) ssim_predicted = eva.compute_ssim(np.squeeze(HR_y), np.squeeze(SR_y)) mse = util.compute_mse(HR_y, SR_y, border_size=self.psnr_calc_border_size) loss_image = util.get_loss_image( HR_y, SR_y, border_size=self.psnr_calc_border_size) util.save_image(output_directory + file_path[29:], true_image) util.save_image( output_directory + filename[28:] + "_input" + extension, input_image) util.save_image( output_directory + filename[28:] + "_input_bicubic" + extension, input_bicubic_image) util.save_image( output_directory + filename[28:] + "_sr" + extension, output_image) util.save_image( output_directory + filename[28:] + "_loss" + extension, loss_image) elif true_image.shape[2] == 1 and self.channels == 1: # for monochrome images input_image = util.build_input_image(true_image, scale=self.scale, alignment=self.scale) output_image, spend_time = self.do(input_image) psnr_predicted = eva.PSNR(np.uint8(true_image), np.uint8(output_image), shave_border=self.psnr_calc_border_size) ssim_predicted = eva.compute_ssim(np.squeeze(true_image), np.squeeze(output_image)) mse = util.compute_mse(true_image, output_image, border_size=self.psnr_calc_border_size) util.save_image(output_directory + file_path, true_image) util.save_image(output_directory + filename + "_sr" + extension, output_image) else: psnr_predicted = 0.0 ssim_predicted = 0.0 mse = 0.0 spend_time = 0.0 if print_console: print("[%s] psnr:%f, ssim:%f, time:%f" % (filename, psnr_predicted, ssim_predicted, spend_time)) return mse, psnr_predicted, ssim_predicted, spend_time
def log_to_tensorboard(self, test_filename, psnr, save_meta_data=True): if self.enable_log is False: return # todo save_meta_data = False org_image = util.set_image_alignment( util.load_image(test_filename, print_console=False), self.scale) if len(org_image.shape ) >= 3 and org_image.shape[2] == 3 and self.channels == 1: org_image = util.convert_rgb_to_y(org_image) input_image = util.resize_image_by_pil( org_image, 1.0 / self.scale, resampling_method=self.resampling_method) bicubic_image = util.resize_image_by_pil( input_image, self.scale, resampling_method=self.resampling_method) if self.max_value != 255.0: input_image = np.multiply(input_image, self.max_value / 255.0) # type: np.ndarray bicubic_image = np.multiply(bicubic_image, self.max_value / 255.0) # type: np.ndarray org_image = np.multiply(org_image, self.max_value / 255.0) # type: np.ndarray feed_dict = { self.x: input_image.reshape([ 1, input_image.shape[0], input_image.shape[1], input_image.shape[2] ]), self.x2: bicubic_image.reshape([ 1, bicubic_image.shape[0], bicubic_image.shape[1], bicubic_image.shape[2] ]), self.y: org_image.reshape([ 1, org_image.shape[0], org_image.shape[1], org_image.shape[2] ]), self.dropout: 1.0, self.is_training: 0 } if save_meta_data: # profiler = tf.profiler.Profile(self.sess.graph) run_metadata = tf.RunMetadata() run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) summary_str, _ = self.sess.run([self.summary_op, self.loss], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata) self.test_writer.add_run_metadata(run_metadata, "step%d" % self.epochs_completed) filename = self.checkpoint_dir + "/" + self.name + "_metadata.txt" with open(filename, "w") as out: out.write(str(run_metadata)) # filename = self.checkpoint_dir + "/" + self.name + "_memory.txt" # tf.profiler.write_op_log( # tf.get_default_graph(), # log_dir=self.checkpoint_dir, # #op_log=op_log, # run_meta=run_metadata) tf.contrib.tfprof.model_analyzer.print_model_analysis( tf.get_default_graph(), run_meta=run_metadata, tfprof_options=tf.contrib.tfprof.model_analyzer. PRINT_ALL_TIMING_MEMORY) else: summary_str, _ = self.sess.run([self.summary_op, self.loss], feed_dict=feed_dict) self.train_writer.add_summary(summary_str, self.epochs_completed) if not self.use_l1_loss: if self.training_step != 0: util.log_scalar_value( self.train_writer, 'PSNR', self.training_psnr_sum / self.training_step, self.epochs_completed) util.log_scalar_value(self.train_writer, 'LR', self.lr, self.epochs_completed) self.train_writer.flush() util.log_scalar_value(self.test_writer, 'PSNR', psnr, self.epochs_completed) self.test_writer.flush()
def load_input_batch_image(batch_dir, image_number): return util.load_image(batch_dir + "/" + INPUT_IMAGE_DIR + "/%06d.bmp" % image_number, print_console=False)
def do_for_evaluate(self, file_path, output_directory=None, print_console=False, save_output_images=True): if save_output_images: filename, extension = os.path.splitext(file_path) output_directory += "/" + self.name + "/" util.make_dir(output_directory) true_image = util.set_image_alignment( util.load_image(file_path, print_console=False), self.scale) if true_image.shape[2] == 3 and self.channels == 1: # for color images input_y_image = loader.build_input_image(true_image, channels=self.channels, scale=self.scale, alignment=self.scale, convert_ycbcr=True) input_bicubic_y_image = util.resize_image_by_pil( input_y_image, self.scale, resampling_method=self.resampling_method) true_ycbcr_image = util.convert_rgb_to_ycbcr(true_image) start = time.time() output_y_image = self.do(input_y_image, input_bicubic_y_image) end = time.time() psnr, ssim = util.compute_psnr_and_ssim( true_ycbcr_image[:, :, 0:1], output_y_image, border_size=self.psnr_calc_border_size) loss_image = util.get_loss_image( true_ycbcr_image[:, :, 0:1], output_y_image, border_size=self.psnr_calc_border_size) output_color_image = util.convert_y_and_cbcr_to_rgb( output_y_image, true_ycbcr_image[:, :, 1:3]) if save_output_images: util.save_image(output_directory + file_path, true_image) util.save_image( output_directory + filename + "_input" + extension, input_y_image) util.save_image( output_directory + filename + "_input_bicubic" + extension, input_bicubic_y_image) util.save_image( output_directory + filename + "_true_y" + extension, true_ycbcr_image[:, :, 0:1]) util.save_image( output_directory + filename + "_result" + extension, output_y_image) util.save_image( output_directory + filename + "_result_c" + extension, output_color_image) util.save_image( output_directory + filename + "_loss" + extension, loss_image) elif true_image.shape[2] == 1 and self.channels == 1: # for monochrome images input_image = loader.build_input_image(true_image, channels=self.channels, scale=self.scale, alignment=self.scale) input_bicubic_y_image = util.resize_image_by_pil( input_image, self.scale, resampling_method=self.resampling_method) start = time.time() output_image = self.do(input_image, input_bicubic_y_image) end = time.time() psnr, ssim = util.compute_psnr_and_ssim( true_image, output_image, border_size=self.psnr_calc_border_size) if save_output_images: util.save_image(output_directory + file_path, true_image) util.save_image( output_directory + filename + "_result" + extension, output_image) else: return None, None if print_console: print("[%s] PSNR:%f, SSIM:%f" % (filename, psnr, ssim)) elapsed_time = end - start return psnr, ssim, elapsed_time
def load_input_image(filename, width=0, height=0, channels=1, scale=1, alignment=0, convert_ycbcr=True, print_console=True): image = util.load_image(filename, print_console=print_console) return build_input_image(image, width, height, channels, scale, alignment, convert_ycbcr)
def do_for_evaluate_with_output(self, file_path, output_directory=None, print_console=False): true_image = util.set_image_alignment( util.load_image(file_path, print_console=False), self.scale) # Assuming the image is color assert true_image.shape[ 2] == 3 and self.channels == 1, "Only 3-channel images are supported" input_image = loader.build_input_image(true_image, scale=self.scale, alignment=self.scale) input_y_image = util.convert_rgb_to_y(input_image) true_y_image = util.convert_rgb_to_y(true_image) input_bicubic_y_image = util.resize_image_by_pil( input_y_image, self.scale, resampling_method=self.resampling_method) output_y_image = self.do(input_y_image, input_bicubic_y_image) psnr, ssim = util.compute_psnr_and_ssim( true_y_image, output_y_image, border_size=self.psnr_calc_border_size) if output_directory: true_ycbcr_image = util.convert_rgb_to_ycbcr(true_image) _, true_cbcr = util.convert_ycbcr_to_y_cbcr(true_ycbcr_image) output_color_image = util.convert_y_and_cbcr_to_rgb( output_y_image, true_cbcr) loss_image = util.get_loss_image( true_y_image, output_y_image, border_size=self.psnr_calc_border_size) filename, extension = os.path.splitext(file_path) output_directory += "/" + self.name + "/" util.make_dir(output_directory) util.save_image(output_directory + file_path, true_image) util.save_image(output_directory + filename + "_input" + extension, input_y_image) util.save_image( output_directory + filename + "_input_bicubic" + extension, input_bicubic_y_image) util.save_image( output_directory + filename + "_true_y" + extension, true_ycbcr_image[:, :, 0:1]) util.save_image( output_directory + filename + "_result" + extension, output_y_image) util.save_image( output_directory + filename + "_result_c" + extension, output_color_image) util.save_image(output_directory + filename + "_loss" + extension, loss_image) if print_console: print("[%s] PSNR:%f, SSIM:%f" % (filename, psnr, ssim)) return psnr, ssim
def load_interpolated_batch_image(batch_dir, image_number): return util.load_image(batch_dir + "/" + INTERPOLATED_IMAGE_DIR + "/%06d.bmp" % image_number, print_console=False)
def log_to_tensorboard(self, test_filename, psnr, save_meta_data=True): # todo save_meta_data = False org_image = util.set_image_alignment( util.load_image(test_filename, print_console=False), self.scale) if len(org_image.shape ) >= 3 and org_image.shape[2] == 3 and self.channels == 1: org_image = util.convert_rgb_to_y(org_image) input_image = util.resize_image_by_pil( org_image, 1.0 / self.scale, resampling_method=self.resampling_method) feed_dict = { self.x: input_image.reshape([ 1, input_image.shape[0], input_image.shape[1], input_image.shape[2] ]), self.y: org_image.reshape([ 1, org_image.shape[0], org_image.shape[1], org_image.shape[2] ]), self.is_training: 0 } if save_meta_data: run_metadata = tf.RunMetadata() run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) summary_str, _ = self.sess.run([self.summary_op, self.mae], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata) self.test_writer.add_run_metadata(run_metadata, "step%d" % self.epochs_completed) filename = self.checkpoint_dir + "/" + self.name + "_metadata.txt" with open(filename, "w") as out: out.write(str(run_metadata)) tf.contrib.tfprof.model_analyzer.print_model_analysis( tf.get_default_graph(), run_meta=run_metadata, tfprof_options=tf.contrib.tfprof.model_analyzer. PRINT_ALL_TIMING_MEMORY) else: summary_str, _ = self.sess.run([self.summary_op, self.mae], feed_dict=feed_dict) self.train_writer.add_summary(summary_str, self.epochs_completed) util.log_scalar_value(self.train_writer, 'training_PSNR', self.training_psnr_sum / self.training_step, self.epochs_completed) util.log_scalar_value(self.train_writer, 'LR', self.lr, self.epochs_completed) self.train_writer.flush() util.log_scalar_value(self.test_writer, 'PSNR', psnr, self.epochs_completed) self.test_writer.flush()
def load_true_batch_image(batch_dir, image_number): return util.load_image(batch_dir + "/" + TRUE_IMAGE_DIR + "/%06d.bmp" % image_number, print_console=False)
def do_for_evaluate(self, file_path, output_directory="output", output=True, print_console=False): filename, extension = os.path.splitext(file_path) output_directory += "/" + self.name + "/" util.make_dir(output_directory) true_image = util.set_image_alignment( util.load_image(file_path, print_console=False), self.scale) if true_image.shape[2] == 3 and self.channels == 1: input_y_image = loader.build_input_image(true_image, channels=self.channels, scale=self.scale, alignment=self.scale, convert_ycbcr=True, jpeg_mode=self.jpeg_mode) # for color images if output: input_bicubic_y_image = util.resize_image_by_pil( input_y_image, self.scale, resampling_method=self.resampling_method) true_ycbcr_image = util.convert_rgb_to_ycbcr( true_image, jpeg_mode=self.jpeg_mode) output_y_image = self.do(input_y_image, input_bicubic_y_image) mse = util.compute_mse(true_ycbcr_image[:, :, 0:1], output_y_image, border_size=6 + self.scale) loss_image = util.get_loss_image(true_ycbcr_image[:, :, 0:1], output_y_image, border_size=self.scale) output_color_image = util.convert_y_and_cbcr_to_rgb( output_y_image, true_ycbcr_image[:, :, 1:3], jpeg_mode=self.jpeg_mode) util.save_image(output_directory + file_path, true_image) util.save_image( output_directory + filename + "_input" + extension, input_y_image) util.save_image( output_directory + filename + "_input_bicubic" + extension, input_bicubic_y_image) util.save_image( output_directory + filename + "_true_y" + extension, true_ycbcr_image[:, :, 0:1]) util.save_image( output_directory + filename + "_result" + extension, output_y_image) util.save_image( output_directory + filename + "_result_c" + extension, output_color_image) util.save_image( output_directory + filename + "_loss" + extension, loss_image) else: true_y_image = util.convert_rgb_to_y(true_image, jpeg_mode=self.jpeg_mode) input_bicubic_y_image = util.resize_image_by_pil( input_y_image, self.scale, resampling_method=self.resampling_method) output_y_image = self.do(input_y_image, input_bicubic_y_image) mse = util.compute_mse(true_y_image, output_y_image, border_size=6 + self.scale) elif true_image.shape[2] == 1 and self.channels == 1: # for monochrome images input_image = loader.build_input_image(true_image, channels=self.channels, scale=self.scale, alignment=self.scale) input_bicubic_y_image = util.resize_image_by_pil( input_image, self.scale, resampling_method=self.resampling_method) output_image = self.do(input_image, input_bicubic_y_image) mse = util.compute_mse(true_image, output_image, border_size=6 + self.scale) if output: util.save_image(output_directory + file_path, true_image) util.save_image( output_directory + filename + "_result" + extension, output_image) else: mse = 0 if print_console: print("MSE:%f, PSNR:%f" % (mse, util.get_psnr(mse))) return mse
def load_and_evaluate_tflite_graph( output_dir, data_dir, test_data, model_path=os.path.join(os.getcwd(), 'model_to_freeze/converted_model.tflite')): # https://stackoverflow.com/questions/50443411/how-to-load-a-tflite-model-in-script # https://www.tensorflow.org/lite/convert/python_api#tensorflow_lite_python_interpreter_ output_directory = output_dir output_directory += "/" + "tflite" + "/" util.make_dir(output_directory) test_filepaths = util.get_files_in_directory(data_dir + "/" + test_data) total_psnr = total_ssim = total_time = 0 # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=model_path) # interpreter = tf.contrib.lite.Interpreter(model_path=model_path) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() for file_path in test_filepaths: # split filename from extension filename, extension = os.path.splitext(file_path) # prepare true image true_image = util.set_image_alignment( util.load_image(file_path, print_console=False), FLAGS.scale) # start the timer if true_image.shape[2] == 3 and FLAGS.channels == 1: # prepare input and ground truth images input_y_image = loader.build_input_image(true_image, channels=FLAGS.channels, scale=FLAGS.scale, alignment=FLAGS.scale, convert_ycbcr=True) input_bicubic_y_image = util.resize_image_by_pil( input_y_image, FLAGS.scale, resampling_method=FLAGS.resampling_method) true_ycbcr_image = util.convert_rgb_to_ycbcr(true_image) # pass inputs through the model (need to recast and reshape inputs) input_y_image_reshaped = input_y_image.astype('float32') input_y_image_reshaped = input_y_image_reshaped.reshape( 1, input_y_image.shape[0], input_y_image.shape[1], FLAGS.channels) input_bicubic_y_image_reshaped = input_bicubic_y_image.astype( 'float32') input_bicubic_y_image_reshaped = input_bicubic_y_image_reshaped.reshape( 1, input_bicubic_y_image.shape[0], input_bicubic_y_image.shape[1], FLAGS.channels) interpreter.set_tensor(input_details[0]['index'], input_y_image_reshaped) # pass x interpreter.set_tensor(input_details[1]['index'], input_bicubic_y_image_reshaped) # pass x2 start = time.time() interpreter.invoke() end = time.time() output_y_image = interpreter.get_tensor( output_details[0]['index']) # get y # resize the output into an image output_y_image = output_y_image.reshape(output_y_image.shape[1], output_y_image.shape[2], FLAGS.channels) # calculate psnr and ssim for the output psnr, ssim = util.compute_psnr_and_ssim( true_ycbcr_image[:, :, 0:1], output_y_image, border_size=FLAGS.psnr_calc_border_size) # get the loss image loss_image = util.get_loss_image( true_ycbcr_image[:, :, 0:1], output_y_image, border_size=FLAGS.psnr_calc_border_size) # get output color image output_color_image = util.convert_y_and_cbcr_to_rgb( output_y_image, true_ycbcr_image[:, :, 1:3]) # save all images util.save_image(output_directory + file_path, true_image) util.save_image(output_directory + filename + "_input" + extension, input_y_image) util.save_image( output_directory + filename + "_input_bicubic" + extension, input_bicubic_y_image) util.save_image( output_directory + filename + "_true_y" + extension, true_ycbcr_image[:, :, 0:1]) util.save_image( output_directory + filename + "_result" + extension, output_y_image) util.save_image( output_directory + filename + "_result_c" + extension, output_color_image) util.save_image(output_directory + filename + "_loss" + extension, loss_image) elapsed_time = end - start total_psnr += psnr total_ssim += ssim total_time += elapsed_time testSize = len(test_filepaths) print("Model Average [%s] PSNR:%f, SSIM:%f, Elapsed Time:%f" % (test_data, total_psnr / testSize, total_ssim / testSize, total_time / testSize))