def derivative_Gaussian(x, complete=True, p=1): if complete: b = 10 else: b = 1.25 filt = (x * b) * np.exp(-(x * b)**2 / 2) return normalization(filt, p=p)
def test(): print('start') for patient in os.listdir('/mnt/hd1/puwenbo/Dataset/T1T2/moving/'): print('do ' + patient + 'now') elastixImageFilter = sitk.ElastixImageFilter() fix = sitk.ReadImage('/mnt/hd1/puwenbo/Dataset/T1T2/fixed/' + patient) elastixImageFilter.SetFixedImage(fix) elastixImageFilter.SetMovingImage(sitk.ReadImage('/mnt/hd1/puwenbo/Dataset/T1T2/moving/' + patient)) elastixImageFilter.SetParameterMap(helper.p) elastixImageFilter.SetOutputDirectory('/mnt/hd1/puwenbo/Dataset/T1T2/output/') elastixImageFilter.Execute() res = helper.normalization(sitk.GetArrayFromImage(elastixImageFilter.GetResultImage())) sitk.WriteImage(sitk.GetImageFromArray(res), '/mnt/hd1/puwenbo/Dataset/T1T2/output/'+ patient)
def conv_filter(x, name='Gaussian', complete=True, p=1): if complete: b = 10 else: b = 1.25 if name == 'Gaussian': filt = np.exp(-(x * b)**2 / 2) elif name == 'derivative': filt = (x * b) * np.exp(-(x * b)**2 / 2) elif name == 'averaging': b = 1.25 filt = np.exp(-(x * b)**2 / 2) else: print(name, 'Filter not implemented') raise ValueError return normalization(filt, p=p)
confusion_set = ['than', 'then'] # minimum occurence of tokens in training data # tokens with less occurences will be substituted to 'U' for unknown # 'U' can also serve as substitute for unseen tokens at test time min_occurrence = 20 ### END SETTINGS ### # init if not os.path.exists(work_dir): os.makedirs(work_dir) with open(corpus_file) as f: sents = [[helper.normalization(twp.split('|')[0].lower()) for twp in line.split()] for line in f] train_sents = list(helper.acs(sents, preserve_tokens)) token_embeddings = helper.TokenEmbeddings(train_sents, min_occurrence) if timestamp and start_epoch and start_iteration: errors = helper.load_errors('%s-%d-%d.errors' % (timestamp, start_epoch, start_iteration), work_dir) load_weights = '%s-%d-%d.weights' % (timestamp, start_epoch, start_iteration) print('init previous states...') print('timestamp: ', timestamp) print('start_epoch: ', start_epoch) print('start_iteration: ', start_iteration) else: errors = [] start_epoch = 0 start_iteration = 0
def StandingStill(x): filt = np.ones(x.shape) return normalization(filt)
def TurnDown(x): l = 10 filt = (1 + np.exp(l * x))**(-1) return normalization(filt)
def TurnUp(x): l = 10 filt = (1 + np.exp(-l * x))**(-1) return normalization(filt)