""" Hyperparameters overview """ import numpy as np import matplotlib.pyplot as plt import helper as h import csm np.set_printoptions(precision=3) p = 0.05 # Select streams and methods streams = h.streams() clfs = h.clfs() # Stream Variables drift_types = ["incremental", "sudden"] ldistributions = [[0.1, 0.9], [0.2, 0.8], [0.3, 0.7], [0.4, 0.6]] random_states = [1337, 666, 42] label_noises = [0.0, 0.1, 0.2, 0.3] # Prepare storage for results chunk_size = next(iter(streams.values())).chunk_size n_chunks = next(iter(streams.values())).n_chunks score_points = list(range(chunk_size, chunk_size * n_chunks, chunk_size)) def gather_and_present(title, filename, streams, what, e): results_hypercube = np.zeros((len(streams), len(clfs), n_chunks - 1)) for i, stream_n in enumerate(streams): results = np.load("results/experiment_%i/%s.npy" % (e, stream_n))
specificity) import sys from sklearn.base import clone from sklearn.tree import DecisionTreeClassifier from skmultiflow.trees import HoeffdingTree if len(sys.argv) != 2: print("PODAJ RS") exit() else: random_state = int(sys.argv[1]) print(random_state) # Select streams and methods streams = h.streams(random_state) print(len(streams)) ob = OnlineBagging(n_estimators=20, base_estimator=GaussianNB()) oob = OOB(n_estimators=20, base_estimator=GaussianNB()) uob = UOB(n_estimators=20, base_estimator=GaussianNB()) ros_knorau2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42, oversampler="ROS"), oversampled="ROS", des="KNORAU2") cnn_knorau2 = SEA(base_estimator=StratifiedBagging(base_estimator=GaussianNB(), random_state=42, oversampler="CNN"), oversampled="CNN",