import nltk from helper import Helper tweet = 'tono gendut jelek' # print classifier.classify(extract_features(tweet.split())) helper = Helper() helper.setFilteredTweet('sentiment.dat') training_set = nltk.classify.apply_features(helper.extract_features, helper.filtered_tweet) # print helper.positive_value # print helper.negative_value # classifier = SvmClassifier.train(training_set) classifier = nltk.NaiveBayesClassifier.train(training_set) helper.save_model('sentiment-naivebayes.mdl', classifier) # helper.save_model('sentiment-svm.mdl', classifier) # classifier = helper.load_model('sentiment-naivebayes.mdl') classic = helper.extract_features(tweet.split()) corpus_tag = helper.get_tag_from_corpus('sentiment.dat') corpus_text = helper.get_text_from_corpus('sentiment.dat') test_tag = [] for text in corpus_text: result = classifier.classify(helper.extract_features(text.split())) test_tag.append(result) corpus_tag.reverse() test_tag.reverse() cm = nltk.ConfusionMatrix(corpus_tag, test_tag) print cm.pp(sort_by_count=True, show_percents=True, truncate=9) print classic print classifier.classify(classic)
import nltk from helper import Helper tweet = 'tono asik' # print classifier.classify(extract_features(tweet.split())) helper = Helper() helper.setFilteredTweet('opinion.dat') training_set = nltk.classify.apply_features(helper.extract_features_opinion, helper.filtered_tweet) # print helper.positive_value # print helper.negative_value classifier = nltk.NaiveBayesClassifier.train(training_set) # classifier = nltk.MaxentClassifier.train(training_set) helper.save_model('opinion-naivebayes.mdl', classifier) # helper.save_model('opinion-maxent.mdl', classifier) # classifier = helper.load_model('opinion-maxent.mdl') classic = helper.extract_features_opinion(tweet.split()) corpus_tag = helper.get_tag_from_corpus('opinion.dat') corpus_text = helper.get_text_from_corpus('opinion.dat') test_tag = [] for text in corpus_text: result = classifier.classify(helper.extract_features_opinion(text.split())) test_tag.append(result) corpus_tag.reverse() test_tag.reverse() cm = nltk.ConfusionMatrix(corpus_tag, test_tag) print cm.pp(sort_by_count=True, show_percents=True, truncate=9) print classic print classifier.classify(classic)