예제 #1
0
def training_for_sigma(sigma):

    print "starting debugging:"


    from expenv import MultiSplitSet
        
    # select dataset
    multi_split_set = MultiSplitSet.get(393)

    SPLIT_POINTER = 1
    
    #create mock param object by freezable struct
    param = Options()
    param.kernel =  "WeightedDegreeStringKernel" #"WeightedDegreeRBFKernel" # #
    param.wdk_degree = 2
    param.cost = 1.0
    param.transform = 1.0 
    param.id = 666
    param.base_similarity = sigma
    param.degree = 2
    param.flags = {}
    
    param.flags["wdk_rbf_on"] = False   
    param.freeze()
    

    data_train = multi_split_set.get_train_data(SPLIT_POINTER)
    data_eval = multi_split_set.get_eval_data(SPLIT_POINTER)


    # train
    mymethod = Method(param)
    mymethod.train(data_train)

    print "training done"

    assessment = mymethod.evaluate(data_eval)
    
    print assessment
    
    assessment.destroySelf()



    return assessment.auROC
예제 #2
0
def main():
    
    
    print "starting debugging:"

    SPLIT_POINTER = 1

    from expenv import MultiSplitSet
    from helper import Options 
    
    
    # select dataset
    multi_split_set = MultiSplitSet.get(399)

    
    #create mock param object by freezable struct
    param = Options()
    param.kernel =  "WeightedDegreeRBFKernel" #"WeightedDegreeStringKernel"# #
    param.wdk_degree = 1
    param.cost = 1.0
    param.transform = 1.0
    param.sigma = 1.0
    param.id = 666
    param.base_similarity = 1
    param.degree = 2
    
    param.freeze()
    

    data_train = multi_split_set.get_train_data(SPLIT_POINTER)
    data_eval = multi_split_set.get_eval_data(SPLIT_POINTER)


    # train
    mymethod = Method(param)
    mymethod.train(data_train)

    print "training done"

    assessment = mymethod.evaluate(data_eval)
    
    print assessment
    
    assessment.destroySelf()
예제 #3
0
def training_for_sigma(sigma):

    print "starting debugging:"

    from expenv import MultiSplitSet

    # select dataset
    multi_split_set = MultiSplitSet.get(393)

    SPLIT_POINTER = 1

    #create mock param object by freezable struct
    param = Options()
    param.kernel = "WeightedDegreeStringKernel"  #"WeightedDegreeRBFKernel" # #
    param.wdk_degree = 2
    param.cost = 1.0
    param.transform = 1.0
    param.id = 666
    param.base_similarity = sigma
    param.degree = 2
    param.flags = {}

    param.flags["wdk_rbf_on"] = False
    param.freeze()

    data_train = multi_split_set.get_train_data(SPLIT_POINTER)
    data_eval = multi_split_set.get_eval_data(SPLIT_POINTER)

    # train
    mymethod = Method(param)
    mymethod.train(data_train)

    print "training done"

    assessment = mymethod.evaluate(data_eval)

    print assessment

    assessment.destroySelf()

    return assessment.auROC
예제 #4
0
def main():

    print "starting debugging:"

    SPLIT_POINTER = 1

    from expenv import MultiSplitSet
    from helper import Options

    # select dataset
    multi_split_set = MultiSplitSet.get(399)

    #create mock param object by freezable struct
    param = Options()
    param.kernel = "WeightedDegreeRBFKernel"  #"WeightedDegreeStringKernel"# #
    param.wdk_degree = 1
    param.cost = 1.0
    param.transform = 1.0
    param.sigma = 1.0
    param.id = 666
    param.base_similarity = 1
    param.degree = 2

    param.freeze()

    data_train = multi_split_set.get_train_data(SPLIT_POINTER)
    data_eval = multi_split_set.get_eval_data(SPLIT_POINTER)

    # train
    mymethod = Method(param)
    mymethod.train(data_train)

    print "training done"

    assessment = mymethod.evaluate(data_eval)

    print assessment

    assessment.destroySelf()